Summary

通过将CBir1 TCR转基因CD4 + T细胞过继转移到免疫缺陷小鼠来诱导肠道炎症

Published: December 16, 2021
doi:

Summary

在该协议中,描述了肠道微生物群抗原特异性T细胞过继转移结肠炎模型。从CBir1 TCR转基因小鼠中分离出CD4 + T细胞。这些对于免疫优势性肠道微生物群抗原CBir1鞭毛蛋白具有特异性,其被转移到受体 Rag1-/- 小鼠中,导致肠道炎症。

Abstract

随着发病率的增加,炎症性肠病(IBD)是影响胃肠道的慢性疾病,给个人和社会带来了相当大的健康和经济负担。因此,研究IBD发病机制和发展的机制至关重要。这里描述了肠道微生物群抗原特异性T细胞转移结肠炎模型。CBir1 鞭毛蛋白已被公认为实验性结肠炎和克罗恩病患者的免疫优势性肠道细菌抗原。CBir1 TCR转基因naϊve CD4 + T细胞,对CBir1鞭毛蛋白具有特异性,可在过继转移到免疫缺陷 的Rag1-/- 小鼠后诱导慢性结肠炎。通过组织病理学评估疾病的严重程度。还测定了固有结肠层中的CD4 + T细胞表型。该模型与IBD的发展非常相似,IBD为研究驱动IBD发病机制和测试治疗IBD的潜在药物提供了理想的小鼠模型。

Introduction

炎症性肠病(IBD),主要包括克罗恩病(CD)和溃疡性结肠炎(UC),其特征是胃肠道的慢性复发缓解炎症,影响全球数百万人1。IBD的发展和发病机制涉及几个因素,包括遗传易感性、肠道微生物群、免疫反应、饮食和生活方式2。然而,IBD的确切机制仍未完全了解。

其中一个特别感兴趣的是肠道微生物群与宿主免疫反应在调节肠道炎症方面的相互作用3。肠道微生物群提供一系列免疫刺激分子和抗原,可以激活免疫反应4。虽然效应T细胞和调节性T细胞(Tregs)之间的平衡对于维持肠道稳态至关重要,但肠粘膜CD4 + T细胞对肠道微生物群抗原的过度反应会导致肠道炎症567。作为一种免疫优势性肠道微生物群抗原,CBir1 鞭毛蛋白与人 CD89 的发病机制有关。此外,CBir1 TCR转基因(Tg)T细胞的转移在免疫缺陷小鼠6中诱导肠道炎症,与人类IBD非常相似,表明这种T细胞转移模型有助于研究人类IBD的机制。

这项工作描述了通过通过收养转移CBir1 TCR Tg naϊve CD4 + T细胞并评估疾病严重程度来诱导Rag1-/-小鼠结肠炎的详细方案。此外,还显示了预期的结果,并讨论了程序和故障排除的关键步骤,这将有助于研究人员研究肠道炎症发病机制并测试治疗IBD的潜在药物。

Protocol

所有动物程序均根据德克萨斯大学医学分会的动物使用和护理委员会进行。CBir1 TCR Tg小鼠由阿拉巴马大学伯明翰分校的Charles Elson博士提供。CBir1 TCR Tg小鼠可以是雌性或雄性,但应该在8-12周。C57BL / 6背景上的 Rag1-/- 小鼠是从杰克逊实验室获得的10。 Rag1-/- 小鼠必须是性别和年龄匹配的,可以使用雄性或雌性,但应该在8-12周。整个协议总结如图 <strong c…

Representative Results

从成年CBir1 TCR Tg小鼠中分离出每个脾脏约5 x 106个CBir1 TCR Tg naϊve CD4 + T细胞。CBir1 TCR Tg naϊve CD4 + T细胞的转移在受体Rag1-/-小鼠中诱导慢性结肠炎。细胞转移后,监测临床体征以评估肠道炎症的进展,包括体重减轻,粪便稠度和驼背姿势。正如预期的那样,小鼠在细胞转移后三周左右开始减肥,并且在细胞转移后六周体重达到原始重量的80%-85%左右(<strong class=…

Discussion

虽然每个步骤对于该结肠炎模型的可重复性都至关重要,但有几个关键步骤。受体Rag-/-小鼠应接受足够的活的naϊve CD4 + T细胞以诱导肠道炎症。我们使用脾脏来分离幼稚的CD4 + T细胞而不是MLN。因为MLNs中幼稚CD4 + T细胞的产量远低于脾脏。CD62L在幼稚T细胞中高度表达,CD44和CD25是T细胞的活化标志物1314。在这项研究…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了美国国立卫生研究院拨款DK125011,AI150210和DK124132,德克萨斯大学系统STAR奖(Y.C.)和德克萨斯大学加尔维斯顿分校(W.Y.)的James W. McLaughlin奖学金基金的部分支持。图 1 是使用 BioRender.com 创建的。

Materials

0.22 µm vacuum-driven disposable bottle top filter MilliporeSigma SCGPS05RE
100x Penicillin-Streptomycin Corning 30-002-CI
100-µm strainer BD Biosciences 352360
3-mL Transfer Pipette Fisherbrand 13-711-9CM
Anti-Mouse CD16/32 Biolegend 101302
Anti-Mouse CD25-Percp/Cy5.5 Biolegend 102030
Anti-mouse CD3-Percp/Cy5.5 Biolegend 100327
Anti-Mouse CD4 APC Biolegend 100516
Anti-Mouse CD4 Magnetic Particles BD Biosciences 551539
Anti-Mouse CD4-BV421 Biolegend 100544
Anti-Mouse CD62L-PE Biolegend 104408
Anti-Mouse Foxp3-PE ThermoFisher 12-5773-82
Anti-Mouse IFNγ-FITC Biolegend 505806
Anti-Mouse IL-17A-PE/Cy7 Biolegend 506922
Automated Cell Counter Bio-rad TC20
Brefeldin A BD Biosciences 555029
BSA Fisher Bioreagents BP1600-1
C tube Miltenyi 130-093-237
Cell Separation Magnet BD Biosciences 552311
Collagenase IV Sigma-Aldrich C5138
DAPI Sigma-Aldrich D9542
Dissociator Machine Miltenyi 130-096-427
DNase I Sigma-Aldrich
EDTA Corning 46-034-CI
EDTA (0.5 M, PH 8.0) Corning 46-034-CI
FBS R&D Systems S11550
Flow cytometer BD Biosciences LSD Fortessa
Heat Lamp CoverShield BR40
Hematoxylin and Eosin (H&E) Stain Kit Abcam ab245880
Insulin Syringes BD Biosciences 329412
Ionomycin ThermoFisher I24222
Live/dead Fixable Near-IR Dead Cell Stain kit ThermoFisher L10119
MaxQ 6000 Incubated/Refrigerated Stackable Shakers ThermoFisher SHKE6000
NH4Cl Thermo Scientific A687-500
Percoll GE Healthcare 17-0891-01
Phorbol-12-myristate 13-acetate Sigma-Aldrich P8139
RPMI 1640 Medium Cytiva HyClone SH3002702
Sorter BD Biosciences Arial Fusion
Tissue Automatic Processor ThermoFisher STP120
Tissue Embedding/Processing Cassette Fisher Healthcare 22048142
Tris Base Thermo Scientific BP154-1
True-Nuclear Transcription Factor Buffer Set (including Perm Buffer) Biolegend 424401

Riferimenti

  1. Kaplan, G. G. The global burden of IBD: From 2015 to 2025. Nature Reviews Gastroenterology & Hepatology. 12 (12), 720-727 (2015).
  2. Ananthakrishnan, A. N. Epidemiology and risk factors for IBD. Nature Reviews Gastroenterology & Hepatology. 12 (4), 205-217 (2015).
  3. Yang, W., Cong, Y. Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. Cellular & Molecular Immunology. 18 (4), 866-877 (2021).
  4. Pickard, J. M., Zeng, M. Y., Caruso, R., Núñez, G. . Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. 279 (1), 70-89 (2017).
  5. Russler-Germain, E. V., Rengarajan, S., Hsieh, C. S. Antigen-specific regulatory T-cell responses to intestinal microbiota. Mucosal Immunology. 10 (6), 1375-1386 (2017).
  6. Chen, L., et al. Microbiota metabolite butyrate differentially regulates Th1 and Th17 cells’ differentiation and function in induction of colitis. Inflammatory Bowel Diseases. 25 (9), 1450-1461 (2019).
  7. Cong, Y., Weaver, C. T., Lazenby, A., Elson, C. O. Bacterial-reactive T regulatory cells inhibit pathogenic immune responses to the enteric flora. Journal of Immunology. 169 (11), 6112-6119 (2002).
  8. Lodes, M. J., et al. Bacterial flagellin is a dominant antigen in Crohn disease. Journal of Clinical Investigation. 113 (9), 1296-1306 (2004).
  9. Targan, S. R., et al. Antibodies to CBir1 flagellin define a unique response that is associated independently with complicated Crohn’s disease. Gastroenterology. 128 (7), 2020-2028 (2005).
  10. Mombaerts, P., et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell. 68 (5), 869-877 (1992).
  11. Charan, J., Kantharia, N. D. How to calculate sample size in animal studies. Journal of Pharmacology & Pharmacotherapeutics. 4 (4), 303-306 (2013).
  12. Kwizera, R., et al. Evaluation of trypan blue stain in the TC20 automated cell counter as a point-of-care for the enumeration of viable cryptococcal cells in cerebrospinal fluid. Medical Mycology. 56 (5), 559-564 (2018).
  13. Boyman, O., Létourneau, S., Krieg, C., Sprent, J. Homeostatic proliferation and survival of naïve and memory T cells. European Journal of Immunology. 39 (8), 2088-2094 (2009).
  14. Chai, J. G., et al. Regulatory T cells, derived from naïve CD4+CD25- T cells by in vitro Foxp3 gene transfer, can induce transplantation tolerance. Transplantation. 79 (10), 1310-1316 (2005).
  15. Bialkowska, A. B., Ghaleb, A. M., Nandan, M. O., Yang, V. W. Improved Swiss-rolling technique for intestinal tissue preparation for immunohistochemical and immunofluorescent analyses. Journal of Visualized Experiments. (113), e54161 (2016).
  16. Bialkowska, A. B., Ghaleb, A. M., Nandan, M. O., Yang, V. W. Improved Swiss-rolling technique for intestinal tissue preparation for immunohistochemical and immunofluorescent analyses. Journal of Visualized Experiments. (113), e54161 (2016).
  17. Fischer, A. H., Jacobson, K. A., Rose, J., Zeller, R. Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harbor Protocols. 2008, (2008).
  18. Erben, U., et al. A guide to histomorphological evaluation of intestinal inflammation in mouse models. International Journal of Clinical and Experimental Pathology. 7 (8), 4557-4576 (2014).
  19. Tuijnman, W. B., Van Wichen, D. F., Schuurman, H. J. Tissue distribution of human IgG Fc receptors CD16, CD32 and CD64: An immunohistochemical study. APMIS. 101 (4), 319-329 (1993).
  20. Yang, W., et al. . Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. 11 (1), 4457 (2020).
  21. Reinoso Webb, C., et al. Differential susceptibility to t cell-induced colitis in mice. Role of the Intestinal Microbiota. Inflammatory Bowel Disease. 24 (2), 361-379 (2018).
  22. Bamias, G., et al. Down-regulation of intestinal lymphocyte activation and Th1 cytokine production by antibiotic therapy in a murine model of Crohn’s disease. Journal of Immunology. 169 (9), 5308-5314 (2002).
  23. Steinbach, E. C., Gipson, G. R., Sheikh, S. Z. Induction of murine intestinal inflammation by adoptive transfer of effector CD4+ CD45RB high T cells into immunodeficient mice. Journal of Visualized Experiments. (98), e52533 (2015).
  24. Atale, N., Gupta, S., Yadav, U. C., Rani, V. Cell-death assessment by fluorescent and nonfluorescent cytosolic and nuclear staining techniques. Journal of Microscopy. 255 (1), 7-19 (2014).
  25. Manichanh, C., Borruel, N., Casellas, F., Guarner, F. The gut microbiota in IBD. Nature Reviews Gastroenterology & Hepatology. 9 (10), 599-608 (2012).
  26. Sun, M., et al. Microbiota-derived short-chain fatty acids promote Th1 cell IL-10 production to maintain intestinal homeostasis. Nature Communications. 9 (1), 3555 (2018).
  27. Feng, T., et al. Th17 cells induce colitis and promote Th1 cell responses through IL-17 induction of innate IL-12 and IL-23 production. Journal of Immunology. 186 (11), 6313-6318 (2011).
  28. Chiaranunt, P., Tometich, J. T., Ji, J. . T Cell Proliferation and Colitis Are Initiated by Defined Intestinal Microbes. 201 (1), 243-250 (2018).
  29. Feng, T., Cao, A. T., Weaver, C. T., Elson, C. O., Cong, Y. Interleukin-12 converts Foxp3+ regulatory T cells to interferon-γ-producing Foxp3+ T cells that inhibit colitis. Gastroenterology. 140 (7), 2031-2043 (2011).
check_url/it/63293?article_type=t

Play Video

Citazione di questo articolo
Yang, W., Yu, T., Cong, Y. Induction of Intestinal Inflammation by Adoptive Transfer of CBir1 TCR Transgenic CD4+ T Cells to Immunodeficient Mice. J. Vis. Exp. (178), e63293, doi:10.3791/63293 (2021).

View Video