Summary

使用共聚焦显微镜以高时间分辨率记录小鼠神经肌肉接头中的钙瞬变

Published: December 01, 2021
doi:

Summary

该方案描述了通过切割神经将荧光钙染料加载到小鼠运动神经末梢的方法。此外,还提出了一种使用共聚焦显微镜记录周围神经末梢快速钙瞬变的独特方法。

Abstract

突触前钙水平的估计是研究突触传递的关键任务,因为钙进入突触前细胞会触发导致神经递质释放的级联事件。此外,突触前钙水平的变化介导了许多细胞内蛋白的活性,并在突触可塑性中起重要作用。研究钙信号传导对于寻找治疗神经退行性疾病的方法也很重要。神经肌肉接头是研究突触可塑性的合适模型,因为它只有一种类型的神经递质。本文描述了通过切割的神经束将钙敏感染料加载到小鼠运动神经末梢的方法。该方法允许估计与细胞内钙变化相关的所有参数,例如基础钙水平和钙瞬变。由于钙从细胞外部流入神经末梢及其与钙敏感染料的结合/解除结合发生在几毫秒的范围内,因此需要一个快速的成像系统来记录这些事件。事实上,高速相机通常用于记录快速钙变化,但它们的图像分辨率参数较低。这里介绍的用于记录钙瞬态的方案允许共聚焦显微镜提供极好的时空分辨率。

Introduction

在可兴奋细胞中测量快速钙波的问题是研究中枢和周围神经系统信号传输的最重要和最具挑战性的方面之一。钙离子在触发神经递质释放、突触可塑性和调节各种细胞内蛋白的活性方面起着重要作用1,2345。研究钙信号传导对于寻找治疗神经退行性疾病的方法也很重要6。为了测量钙水平的变化,通常使用荧光钙敏感染料,并分析其荧光水平的变化789

钙染料加载到细胞中可以通过不同的方式实现。主要使用细胞渗透性染料1011。然而,在这种情况下,不仅难以控制细胞内染料的浓度,而且也很难选择目标细胞进行上样。该方法不适用于研究周围神经末梢,因为染料进入突触后细胞。相反,细胞不透透的染料更适合这种制剂。在这种情况下,染料通过显微注射或通过贴片移液管12,1314递送到细胞。还有一种通过神经残端加载的方法。后一种方法最适合于神经肌肉接头制剂15,16,17181920它允许仅对感兴趣的细胞进行染色。尽管该方法不能准确评估靶细胞中染料的浓度,但可以通过比较溶液中静止细胞的荧光水平与已知浓度的钙21来近似估计浓度。在这项研究中,提出了应用于哺乳动物突触的该方法的修改。

在动作电位的去极化阶段钙进入是一个快速的过程,特别是在神经肌肉接头;因此,对于其注册,需要适当的设备1.最近使用电压敏感荧光染料的一项研究表明,小鼠外周突触中动作电位的持续时间约为300μs22。在青蛙的外围突触中使用钙敏感染料评估钙瞬变的持续时间更长:上升时间约为2-6毫秒,衰减时间约为30-90毫秒,具体取决于使用的钙染料2324。为了在荧光染料的帮助下测量快速过程,通常使用CCD或CMOS相机,以及快速灵敏的CCD矩阵。然而,这些相机具有低分辨率的缺点,受限于矩阵25、262728的敏感元件的大小。最快的相机具有足够的灵敏度来记录响应细胞低频刺激的动作电位和钙瞬变,扫描频率为2,000 Hz,矩阵尺寸为80 x 8029。为了获得具有更高空间分辨率的信号,使用共聚焦显微镜,特别是当需要评估信号中的一些体积变化时303132。但应该记住,共聚焦显微镜在线扫描模式下具有很高的扫描速度,但在构建空间图像时,记录快速过程的速度仍然存在显着限制33。有基于旋转Nipkow盘(狭缝扫描显微镜)的共聚焦显微镜和具有更高扫描速度的多点阵列扫描仪。同时,它们在共聚焦图像滤波(带有Nipkow盘的显微镜的针孔串扰)方面不如经典共聚焦显微镜323435。具有共振扫描的共聚焦成像还可以提供高时间测量所需的高时空分辨率36。然而,考虑到当使用共振扫描仪时,以高扫描速度配准弱荧光响应需要高灵敏度的检测器,例如混合检测器36

本文提出了一种提高激光扫描共聚焦显微镜(LSCM)记录的信号的时间分辨率,同时保持空间分辨率37的方法。目前的方法是前面描述的方法的进一步发展,并转移到LSCM平台383940。这种方法不需要改变显微镜硬件,并且基于一种算法的应用,用于记录周期性诱发的荧光信号,具有相对于刺激时刻的时间偏移。

Protocol

对来自小鼠BALB / C(20-23g,2-3个月大)的分离神经肌肉制剂进行实验41。 实验程序按照喀山联邦大学和喀山医科大学的实验动物使用指南进行,符合NIH实验动物护理和使用指南。实验方案符合欧洲共同体理事会指令86/609/EEC的要求,并得到喀山医科大学伦理委员会的批准。 1. 林格氏和归档解决方案的准备 通过混合以下成分来制备哺?…

Representative Results

根据所提出的技术用染料加载制剂后,位于神经残端附近的大多数突触具有足够的荧光水平(见 图2)。用染料加载制剂并应用所述配准和图像处理方法后,获得具有所需空间和时间分辨率的钙瞬变(见 图4)。钙瞬时已通过所提出的方法回收(见 图3)。 还分析了恢复信号的幅度和时间参数。平均数据如 <str…

Discussion

本文介绍了通过神经残端将Ca2+敏感染料加载到小鼠神经末梢以及使用共聚焦显微镜记录快速钙瞬变的方法。由于实施了这种加载方法,位于神经残端附近的大多数突触具有足够的荧光水平,以记录钙进入神经末梢以响应运动神经的低频刺激。

与之前提出的通过残肢加载钙染料的方案不同,该协议设计用于哺乳动物突触。以前用于冷血动物制剂的方案需要过夜孵育<sup …

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作的荧光研究在俄罗斯科学基金会赠款(项目编号19-15-00329)的资助下进行。该方法是在政府为RAS АААААА-А18-118022790083-9的喀山科学中心分配的资助下开发的。该研究是使用联邦研究中心“RAS喀山科学中心”的设备开发的。作者要感谢Victor I. Ilyin博士对这份手稿的批判性阅读。

Materials

Capillary Glass Clark Electromedical instruments, UK GC150-10
Confocal and multiphoton microscope system Leica TCS SP5 MP Leica Microsystems , Heidelberg, Germany
Flaming/Brown Micropipette Puller P 97 Sutter Instrument, USA P-97
Flow regulator KD Medical GmbH Hospital Products, Germany KD REG Disposable infusion set with Flow regulator
HEPES Sigma-Aldrich, USA H0887 100mL
Illumination system Leica CLS 150X Leica Microsystems, Germany
ImageJ National Institutes of Health, USA http://rsb.info.nih.gov/ij/download.html
Las AF software Leica Microsystems, Heidelberg, Germany
Las X software Leica Microsystems, Heidelberg, Germany https://www.leica-microsystems.com/products/microscope-software/p/leica-las-x-ls/
Magnetic Holder with Suction Tubing BIOSCIENCE TOOLS, USA MTH-S
Microspin FV 2400 Biosan, Latvia BS-010201-AAA
Minutien Pins Fine science tools, Canada 26002-20
Multi-spin MSC 3000 Biosan, Latvia BS-010205-AAN
Oregon Green 488 BAPTA-1 pentapotassium salt Molecular Probes, USA O6806 500 μg
Pipette Biohit, Russia 720210 0.5-10 µL
Pipette tip Biohit, Russia 781349 10 µL
Plasticine local producer
Single-use hypodermic needles Bbraun 100 Sterican 0.4×40 mm
Spreadsheet program Microsoft, USA Microsoft Office Excel
Stereomicroscope, Leica M80 Leica Microsystems , Germany
Suction electrode Kazakov A. SIMPLE SUCTION ELECTRODE FOR ELECTRIC STIMULATION OF BIOLOGICAL OBJECTS / A. Kazakov, M. Alexandrov, N. V. Zhilyakov et al. // International research journal. - 2015. – No. 9 (40) Part 3. – P. 13-16. http://research-journal.org/biology/prostoj-vsasyvayushhij-elektrod-dlya-elektricheskoj-stimulyacii-biologicheskix-obektov/
Sylgard 184 elastomer Dow Corning, USA
Syringe local producer 0.5 mL
Syringe local producer 60 mL

Riferimenti

  1. Llinas, R., Steinberg, I. Z., Walton, K. Presynaptic calcium currents and their relation to synaptic transmission: voltage clamp study in squid giant synapse and theoretical model for the calcium gate. Proceedings of the National Academy of Sciences of the United States of America. 73 (8), 2918-2922 (1976).
  2. Augustine, G. J. How does calcium trigger neurotransmitter release. Current Opinion in Neurobiology. 11 (3), 320-326 (2001).
  3. Burnashev, N., Rozov, A. Presynaptic Ca2+ dynamics, Ca2+ buffers and synaptic efficacy. Cell Calcium. 37 (5), 489-495 (2005).
  4. Schneggenburger, R., Neher, E. Presynaptic calcium and control of vesicle fusion. Current Opinion in Neurobiology. 15 (3), 266-274 (2005).
  5. Pang, Z. P., Südhof, T. C. Cell biology of Ca2+-triggered exocytosis. Current Opinion in Cell Biology. 22 (4), 496-505 (2010).
  6. Leal, S. S., Gomes, C. M. Calcium dysregulation links ALS defective proteins and motor neuron selective vulnerability. Frontiers in Cellular Neuroscience. 9, 225 (2015).
  7. Grynkiewicz, G., Poenie, M., Tsien, R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. Journal of Biological Chemistry. 260 (6), 3440-3450 (1985).
  8. Tsien, R. Y. Fluorescent indicators of ion concentrations. Methods in Cell Biology. 30, 127-156 (1989).
  9. Adams, S. R. How calcium indicators work. Cold Spring Harbor Protocols. 2010 (3), (2010).
  10. Macleod, G. T. Topical application of indicators for calcium imaging at the Drosophila larval neuromuscular junction. Cold Spring Harbor Protocols. 2012 (7), 786-790 (2012).
  11. Regehr, W. G. Monitoring presynaptic calcium dynamics with membrane-permeant indicators. Imaging in Neuroscience and Development: A Laboratory Manual. , 307-314 (2005).
  12. Eilers, J., Konnerth, A. Dye loading with patch pipettes. Cold Spring Harbor Protocols. 2009 (4), 5201 (2009).
  13. Coleman, W. L., et al. Synapsin II and calcium regulate vesicle docking and the cross-talk between vesicle pools at the mouse motor terminals. Journal of Physiology. 586 (19), 4649-4673 (2008).
  14. Macleod, G. T. Direct injection of indicators for calcium imaging at the drosophila larval neuromuscular junction. Cold Spring Harbor Protocols. 2012 (7), 797-801 (2012).
  15. Peng, Y. Y., Zucker, R. S. Release of LHRH is linearly related to the time integral of presynaptic Ca+ elevation above a threshold level in bullfrog sympathetic ganglia. Neuron. 10 (3), 465-473 (1993).
  16. Tsang, C. W., Elrick, D. B., Charlton, M. P. α-Latrotoxin releases calcium in frog motor nerve terminals. The Journal of Neuroscience. 20 (23), 8685-8692 (2000).
  17. Newman, Z., et al. Endocannabinoids mediate muscarine-induced synaptic depression at the vertebrate neuromuscular junction. The European Journal of Neuroscience. 25 (6), 1619-1630 (2007).
  18. Macleod, G. T. Forward-filling of dextran-conjugated indicators for calcium imaging at the drosophila larval neuromuscular junction. Cold Spring Harbor Protocols. 2012 (7), 791-796 (2012).
  19. Rossano, A. J., Macleod, G. T. Loading drosophila nerve terminals with calcium indicators. Journal of Visualized Experiments: JoVE. (6), e250 (2007).
  20. Wu, L. G., Betz, W. J. Nerve activity but not intracellular calcium determines the time course of endocytosis at the frog neuromuscular junction. Neuron. 17 (4), 769-779 (1996).
  21. Suzuki, S., et al. Ca2+ dynamics at the frog motor nerve terminal. Pflugers Archiv: European Journal of Physiology. 440 (3), 351-365 (2000).
  22. Ojala, K. S., et al. A high-affinity, partial antagonist effect of 3,4-diaminopyridine mediates action potential broadening and enhancement of transmitter release at NMJs. Journal of Biological Chemistry. 296, 100302 (2021).
  23. Samigullin, D., et al. Estimation of presynaptic calcium currents and endogenous calcium buffers at the frog neuromuscular junction with two different calcium fluorescent dyes. Frontiers in Synaptic Neuroscience. 6, 29 (2015).
  24. DiGregorio, D. A., Vergara, J. L. Localized detection of action potential-induced presynaptic calcium transients at a Xenopus neuromuscular junction. The Journal of Physiology. 505, 585-592 (1997).
  25. Bullen, A., Patel, S. S., Saggau, P. High-speed, random-access fluorescence microscopy: I. High-resolution optical recording with voltage-sensitive dyes and ion indicators. Biophysical Journal. 73 (1), 477-491 (1997).
  26. Bullen, A., Saggau, P. High-speed, random-access fluorescence microscopy: II. Fast quantitative measurements with voltage-sensitive dyes. Biophysical Journal. 76 (4), 2272-2287 (1999).
  27. Bullen, A., Saggau, P. Optical recording from individual neurons in culture. Modern Techniques in Neuroscience Research. (4), 89-126 (1999).
  28. Bullen, A., Saggau, P. Indicators and optical configuration for simultaneous high-resolution recording of membrane potential and intracellular calcium using laser scanning microscopy. Pflugers Archiv European Journal of Physiology. 436 (5), 788-796 (1998).
  29. Wilson, T. Optical aspects of confocal microscopy. Confocal Microscopy. , 93-141 (1990).
  30. Cox, G. Biological confocal microscopy. Materials Today. 5 (3), 34-41 (2002).
  31. Mukhitov, A., Arkhipova, S., Nikolsky, E. Modern Light Microscopy in Biological and Medical Research. Nauka. , (2011).
  32. Mertz, J. Optical sectioning microscopy with planar or structured illumination. Nature Methods. 8 (10), 811-819 (2011).
  33. Webb, R. H. Confocal optical microscopy. Reports on Progress in Physics. 59 (3), 427-471 (1996).
  34. Toomre, D., Pawley, J. B. Disk-scanning confocal microscopy. Handbook of Biological Confocal Microscopy: Third Edition. , 221-238 (2006).
  35. Venkateswarlu, K., et al. Three-dimensional imaging and quantification of real-time cytosolic calcium oscillations in microglial cells cultured on electrospun matrices using laser scanning confocal microscopy. Biotechnology and Bioengineering. 117 (10), 3108-3123 (2020).
  36. Arkhipov, A. Y., Khaziev, E. F., Skorinkin, A. I., Bukharaeva, E. A., Samigullin, D. V. Enhancement of the temporal resolution of fluorescent signals acquired by the confocal microscope. Microscopy and Microanalysis. 26 (2), 204-210 (2020).
  37. Rama, S. Shift and mean algorithm for functional imaging with high spatio-temporal resolution. Frontiers in Cellular Neuroscience. 9, (2015).
  38. Chan, K. G., Streichan, S. J., Trinh, L. A., Liebling, M. Simultaneous temporal superresolution and denoising for cardiac fluorescence microscopy. IEEE Transactions on Computational Imaging. 2 (3), 348-358 (2016).
  39. Veeraraghavan, A., Reddy, D., Raskar, R. Coded strobing photography: compressive sensing of high speed periodic videos. IEEE Transactions on Pattern Analysis and Machine Intelligence. 33 (4), 671-686 (2011).
  40. Angaut-Petit, D., Molgo, J., Connold, A. L., Faille, L. The levator auris longus muscle of the mouse: A convenient preparation for studies of short- and long-term presynaptic effects of drugs or toxins. Neuroscience Letters. 82 (1), 83-88 (1987).
  41. Macleod, G. T. Calcium imaging at the Drosophila larval neuromuscular junction. Cold Spring Harbor Protocols. 7 (7), 758-766 (2012).
  42. Samigullin, D. V., Khaziev, E. F., Zhilyakov, N. V., Bukharaeva, E. A., Nikolsky, E. E. Loading a calcium dye into frog nerve endings through the nerve stump: calcium transient registration in the frog neuromuscular junction. Journal of Visualized Experiments: JoVE. (125), e55122 (2017).
  43. Samigullin, D. V., et al. Calcium transient registration in response to single stimulation and during train of pulses in mouse neuromuscular junction. BioNanoScience. 7 (1), 162-166 (2017).
  44. Luo, F., Dittrich, M., Stiles, J. R., Meriney, S. D. single-pixel optical fluctuation analysis of calcium channel function in active zones of motor nerve terminals. Journal of Neuroscience. 31 (31), 11268-11281 (2011).
  45. Luo, F., Dittrich, M., Cho, S., Stiles, J. R., Meriney, S. D. Transmitter release is evoked with low probability predominately by calcium flux through single channel openings at the frog neuromuscular junction. Journal of Neurophysiology. 113 (7), 2480-2489 (2015).
  46. Wright, M., Kim, A., Son, Y. -. J. Subcutaneous administration of muscarinic antagonists and triple-immunostaining of the levator auris longus muscle in mice. Journal of Visualized Experiments: JoVE. (55), e3124 (2011).
  47. Burke, S. R. A., Reed, E. J., Romer, S. H., Voss, A. A. Levator Auris Longus preparation for examination of mammalian neuromuscular transmission under voltage clamp conditions. Journal of Visualized Experiments: JoVE. (135), e57482 (2018).
  48. Kazakov, A., Alexandrov, M., Zhilyakov, N. V., Khaziev, E. F., Samigullin, D. V. A simple suction electrode for electrical stimulation of biological objects. Meždunarodnyj naučno-issledovatel’skij žurnal (International Research Journal). 9 (40), 13-16 (2015).
  49. Bowman, W. C. Neuromuscular block. British Journal of Pharmacology. 147, 277-286 (2006).
  50. Hill, J. M., Alewood, P. F., Craik, D. J. Three-dimensional solution structure of µ-conotoxin GIIIB, a specific blocker of skeletal muscle sodium channels. Biochimica. 35 (27), 8824-8835 (1996).
  51. Land, B. R., Johnson, B. R., Wyttenbach, R. A., Hoy, R. R. Tools for physiology labs: Inexpensive equipment for physiological stimulation. Journal of Undergraduate Neuroscience Education. 3 (1), 30-35 (2004).
  52. Samigullin, D. V., Zhilyakov, N. V., Khaziev, E. F., Bukharaeva, E. A., Nikolsky, E. E. Calcium transient and quantal release in mouse neuromuscular junction under extracellular calcium concentration change. BioNanoScience. 8 (4), 984-987 (2018).
  53. Khaziev, E., et al. acetylcholine-induced inhibition of presynaptic calcium signals and transmitter release in the frog neuromuscular junction. Frontiers in Physiology. 7, 621 (2016).
  54. Zhilyakov, N., Arkhipov, A., Malomouzh, A., Samigullin, D. Activation of neuronal nicotinic receptors inhibits acetylcholine release in the neuromuscular junction by increasing ca2+ flux through cav1 channels. International Journal of Molecular Sciences. 22 (16), 9031 (2021).
  55. Sabatini, B. L., Regehr, W. G. Optical measurement of presynaptic calcium currents. Biophysical Journal. 74 (3), 1549-1563 (1998).
  56. McArdle, J. J., et al. Advantages of the triangularis sterni muscle of the mouse for investigations of synaptic phenomena. Journal of Neuroscience Methods. 4 (2), 109-115 (1981).
check_url/it/63308?article_type=t

Play Video

Citazione di questo articolo
Zhilyakov, N. V., Arkhipov, A. Y., Khaziev, E. F., Mukhamedyarov, M. A., Samigullin, D. V. Registration of Calcium Transients in Mouse Neuromuscular Junction with High Temporal Resolution using Confocal Microscopy. J. Vis. Exp. (178), e63308, doi:10.3791/63308 (2021).

View Video