Summary

通过主动脉幻影进行血液动力学的粒子图像测速

Published: February 25, 2022
doi:

Summary

本方案描述了为研究通过经导管主动脉瓣(TAV)的 体外 设置的窦流而进行的颗粒图像测速(PIV)测量。还确定了基于速度的血流动力学参数。

Abstract

最近有经导管主动脉瓣植入术 (TAVI) 患者主动脉瓣功能障碍和卒中的报道。已怀疑主动脉窦和新窦中由于血流动力学改变而出现血栓。 体外 实验有助于研究 体内 评估证明有限的情况下的血流动力学特征。 体外 实验也更加稳健,可变参数易于控制。粒子图像测速(PIV)是一种用于 体外 研究的流行测速方法。它提供了高分辨率的速度场,因此甚至可以观察到小尺度的流动特征。本研究的目的是展示如何使用PIV来研究TAVI后主动脉窦的流场。描述了主动脉幻象的 体外 设置,用于PIV的TAVI以及数据采集过程和后处理流程分析。推导血流动力学参数,包括速度、流动停滞、涡旋、涡度和颗粒驻留。结果证实, 体外 实验和PIV有助于研究主动脉窦的血流动力学特征。

Introduction

主动脉瓣狭窄是老年人的常见疾病,当主动脉瓣不打开时,会减少血流量。该问题是由主动脉瓣1的增厚或钙化引起的。因此,这是一种必要的治疗方法,可以增强血液流动并减少心脏的负荷。它通过重塑主动脉瓣或用人工瓣膜代替它来治疗。本研究的重点是经导管主动脉瓣植入术(TAVI),使用导管用人工主动脉瓣取代功能异常的主动脉瓣。

TAVI已被推荐用于手术中受到挑战的患者,死亡率也很低2。近日,已有报道,TAVI患者血栓引起瓣膜功能障碍和中风34。怀疑主动脉窦和新窦中的血栓,其原因可能是TAVI引起的血流动力学变化。它是在不删除本地传单的情况下执行的;这些小叶会扰乱鼻窦流动并增加血栓形成的风险5

很难确定TAVI如何影响血流以及如何在患者中诱导血栓形成。希望阐明血流与 体内血栓形成之间的关系。然而,缺乏测量血流的实用技术使这成为问题。另一方面, 体外 技术具有通过限制必须研究的参数来监测血流变化的优点。 体外 设置和颗粒图像测速(PIV)已被用于识别医疗领域的速度678。因此, 体外 和PIV足以通过模仿患者的病情来确定要报告的参数:心率和压力,粘度和鼻窦几何形状,并允许人们控制这些参数。

在这项研究中, 体外 设置和PIV用于研究TAVI后主动脉窦的血流。该方案描述了PIV的主动脉幻像和TAVI以及数据采集过程和后处理流量分析。推导了各种血流动力学参数,包括速度,静止,涡旋,涡度和颗粒驻留。结果表明, 体外 设置和PIV有助于研究主动脉窦的血流动力学特征。

Protocol

1. 体外 设置 在光学工作台上准备实验装置,包括柱塞泵,数据采集装置(DAQ)以及具有所需系统工程软件和电机控制软件的计算机(见 材料表)(图1)。注:柱塞泵先前已经过测试和校准,由电机、电机驱动器和线性执行器9组成。 将包含流速信息的电子表格文件导入系统工程软件。注意:例如,心?…

Representative Results

速度场根据 图4中的阀门直径显示出不同的正弦流结构。对于TAV(23 mm),TAV和STJ之间的速度高于0.05 m / s,从早期收缩到使用转发射流打开的TAV峰值收缩。然后将高速分布在收缩期晚期支架附近的狭窄范围内。舒张期速度低于0.025 m/s,出现2个低速涡流。对于TAV(26毫米),当阀门打开时,在STJ处测量高速。除早期收缩外,鼻窦速度分布均低于0.05 m/s。具体而言,收缩晚期的速…

Discussion

由于TAVI后窦的几何形状不同,窦流发生了变化。漩涡是由主动脉瓣打开和与收缩素22的前射流的相互作用形成的。在没有天然小叶的人工手术瓣膜的研究中,在收缩期在窦区观察到的涡旋正常23。该研究通过减少前射流并进入鼻窦来形成舒张时呈现的涡旋。窦流遇到本地小叶;结果,它在本地小叶下方顺时针拆分,在上方逆时针拆分。这表明TAVI后的患者与没有血…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

本研究由韩国国家研究基金会基础科学研究计划支持,该计划由教育部资助(NRF-2021R1I1A3040346和NRF-2020R1A4A1019475)。这项研究还得到了江原国立大学2018年研究资助(PoINT)的支持。

Materials

3D Printer Prusa Research Original Prusa i3 MK2; FDM printer
Aluminum bar (square) APSPRO KHP-3030, KHP-6060 Dimension: 30 mm x 30 mm, 60 mm x 60 mm
Bulb pump Skyhope MHL-1
Camera controlling software Phantom PCC 3.4 software The software controll the high speed camera
Check valve HANJU STEEL PIPE Check valve; 1/2 inch (15A)
Digital Aqusition device National Instruments USB-6001
Glycerin ANU Korea It used for making a working fluid
High-speed camera Phantom Phantom VEO 710E-L
Laser Changchun New Industries Optoelectronics Technology MGL-W-532; CW Nd:YAG Laser
Linear actuator THOMSON PC-40; it converts the rotational motion to lenear motion
Macro lens Nikon VR Micro-NIKKOR 105mm, f/1.4
Motor KOLLMORGEN AKM33H-ANCNR-00; DC servo motor
Motor controlling software KOLLMORGEN Kollmorgen software; the software controll the motor driver
Motor driver KOLLMORGEN AKD-B00606-NBAN-0000
Open-source electronic prototypic platform Arduino A000066 Arduino Uno R3. It used for making a external trigger
Optic table SMTECH 1800 (W) x 900 (B) x 800 (H)
Particle Dantec Dynamics 80A6011 Hollow Glass Sphere. Mean diameter:10 µm, Density: 1090 kg/m3
PIVlab PIVlab Open source algorithm based on MATLAB
https://kr.mathworks.com/matlabcentral/fileexchange/27659-pivlab-particle-image-velocimetry-piv-tool-with-gui
Pressure gauge OMEGA PX309-015A5V. Measurement range: 0~15psi
Refractometer ATAGO 2350 R-5000. Hand held refractometer; measurement range: 1.333-1.520
Resistance valve HANJU STEEL PIPE Ball valve; 1/2 inch (15A)
Saline DAI HAN PHARM It is used for making a working fluid and for preserving the TAV
Silicone hose HSW Inner diameter 26mm, Outter diameter 30mm; Inlet length 5m, Outlet length 1.5m
System enginnering software National Instruments LabVIEW software. The software controlls the DAQ.
Transcatheter Aortic Valve, TAV (23 mm) and TAV (26 mm) Edwards Lifesciences SAPIEN3 23mm, SAPIEN3 26mm. It is supported by Seoul Asan Medical
Viscosmeter Brookfiled DVELV; Measurement range: 1-2×109 cp

Riferimenti

  1. Carabello, B. A., Paulus, W. J. Aortic stenosis. The Lancet. 373 (9667), 956-966 (2009).
  2. Jakobsen, L., et al. Short-and long-term mortality and stroke risk after transcatheter aortic valve implantation. The American Journal of Cardiology. 121 (1), 78-85 (2018).
  3. Koo, H. J., et al. Computed tomography features of cuspal thrombosis and subvalvular tissue ingrowth after transcatheter aortic valve implantation. The American Journal of Cardiology. 125 (4), 597-606 (2020).
  4. Midha, P. A., et al. The fluid mechanics of transcatheter heart valve leaflet thrombosis in the neosinus. Circulation. 136 (17), 1598-1609 (2017).
  5. Abubakar, H., Ahmed, A. S., Subahi, A., Yassin, A. S. Thrombus in the Right Coronary Sinus of Valsalva Originating From the Left Atrial Appendage Causing Embolic Inferior Wall Myocardial Infarction. Journal of Investigative Medicine High Impact Case Reports. 6, 2324709618792023 (2018).
  6. Charonko, J., Karri, S., Schmieg, J., Prabhu, S., Vlachos, P. In vitro, time-resolved PIV comparison of the effect of stent design on wall shear stress. Annals of Biomedical Engineering. 37 (7), 1310-1321 (2009).
  7. Hariharan, P., et al. Inter-laboratory characterization of the velocity field in the FDA blood pump model using particle image velocimetry (PIV). Cardiovascular Engineering and Technology. 9 (4), 623-640 (2018).
  8. Lim, W., Chew, Y., Chew, T., Low, H. Pulsatile flow studies of a porcine bioprosthetic aortic valve in vitro: PIV measurements and shear-induced blood damage. Journal of Biomechanics. 34 (11), 1417-1427 (2001).
  9. Kim, J., Lee, Y., Choi, S., Ha, H. Pulsatile flow pump based on an iterative controlled piston pump actuator as an in-vitro cardiovascular flow model. Medical Engineering & Physics. 77, 118-124 (2020).
  10. Moore, B. L., Dasi, L. P. Coronary flow impacts aortic leaflet mechanics and aortic sinus hemodynamics. Annals of Biomedical Engineering. 43 (9), 2231-2241 (2015).
  11. Evans, B. . Practical 3D printers: The science and art of 3D printing. , (2012).
  12. Yudi, M. B., Sharma, S. K., Tang, G. H., Kini, A. Coronary angiography and percutaneous coronary intervention after transcatheter aortic valve replacement. Journal of the American College of Cardiology. 71 (12), 1360-1378 (2018).
  13. Adrian, R. J., Westerweel, J. . Particle Image Velocimetry. , (2011).
  14. Deen, N. G., et al. On image pre-processing for PIV of single-and two-phase flows over reflecting objects. Experiments in Fluids. 49 (2), 525-530 (2010).
  15. Thielicke, W., Stamhuis, E. PIVlab-towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. Journal of Open Research Software. 2 (1), (2014).
  16. Pizer, S. M., et al. Adaptive histogram equalization and its variations. Computer Vision, Graphics, and Image Processing. 39 (3), 355-368 (1987).
  17. Garcia, D. Robust smoothing of gridded data in one and higher dimensions with missing values. Computational Statistics & Data Analysis. 54 (4), 1167-1178 (2010).
  18. Elger, D. F., LeBret, B. A., Crowe, C. T., Roberson, J. A. . Engineering Fluid Mechanics. , (2020).
  19. Raghav, V., Sastry, S., Saikrishnan, N. Experimental assessment of flow fields associated with heart valve prostheses using particle image velocimetry (PIV): recommendations for best practices. Cardiovascular Engineering and Technology. 9 (3), 273-287 (2018).
  20. Ncho, B., Sadri, V., Ortner, J., Kollapaneni, S., Yoganathan, A. In-Vitro Assessment of the Effects of Transcatheter Aortic Valve Leaflet Design on Neo-Sinus Geometry and Flow. Annals of Biomedical Engineering. 49 (3), 1046-1057 (2021).
  21. Graftieaux, L., Michard, M., Grosjean, N. Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Measurement Science and Technology. 12 (9), 1422 (2001).
  22. Yap, C. H., Saikrishnan, N., Tamilselvan, G., Yoganathan, A. P. Experimental measurement of dynamic fluid shear stress on the aortic surface of the aortic valve leaflet. Biomechanics and Modeling in Mechanobiology. 11 (1), 171-182 (2012).
  23. Toninato, R., Salmon, J., Susin, F. M., Ducci, A., Burriesci, G. Physiological vortices in the sinuses of Valsalva: an in vitro approach for bio-prosthetic valves. Journal of Biomechanics. 49 (13), 2635-2643 (2016).
  24. Raghav, V., Midha, P., Sharma, R., Babaliaros, V., Yoganathan, A. Transcatheter aortic valve thrombosis: a review of potential mechanisms. Journal of the Royal Society Interface. 18 (184), 20210599 (2021).
  25. Ramanathan, T., Skinner, H. Coronary blood flow. Continuing Education in Anaesthesia, Critical Care & Pain. 5 (2), 61-64 (2005).
  26. Nobach, H., Bodenschatz, E. Limitations of accuracy in PIV due to individual variations of particle image intensities. Experiments in Fluids. 47 (1), 27-38 (2009).
  27. Gülan, U., et al. Performance analysis of the transcatheter aortic valve implantation on blood flow hemodynamics: An optical imaging-based in vitro study. Artificial Organs. 43 (10), 282-293 (2019).
check_url/it/63492?article_type=t

Play Video

Citazione di questo articolo
Kang, J., Ha, H. Particle Image Velocimetry Investigation of Hemodynamics via Aortic Phantom. J. Vis. Exp. (180), e63492, doi:10.3791/63492 (2022).

View Video