Summary

Dreidimensionale Charakterisierung von interorganellen Kontaktstellen in Hepatozyten mittels serieller Schnittelektronenmikroskopie

Published: June 09, 2022
doi:

Summary

Ein einfaches und umfassendes Protokoll, um dreidimensionale Details von Membrankontaktstellen zwischen Organellen in Hepatozyten aus der Leber oder Zellen in anderen Geweben zu erfassen.

Abstract

Die Transmissionselektronenmikroskopie gilt seit langem als Goldstandard für die Visualisierung zellulärer Ultrastrukturen. Die Analyse ist jedoch oft auf zwei Dimensionen beschränkt, was die Fähigkeit behindert, die dreidimensionale (3D) Ultrastruktur und die funktionelle Beziehung zwischen Organellen vollständig zu beschreiben. Die Volumenelektronenmikroskopie (vEM) beschreibt eine Sammlung von Techniken, die die Abfrage der zellulären Ultrastruktur in 3D bei mesoskaligen, mikroskaligen und nanoskaligen Auflösungen ermöglichen.

Dieses Protokoll bietet eine zugängliche und robuste Methode zur Erfassung von vEM-Daten mittels serieller Schnittübertragung EM (TEM) und deckt die technischen Aspekte der Probenbearbeitung bis hin zur digitalen 3D-Rekonstruktion in einem einzigen, unkomplizierten Workflow ab. Um die Nützlichkeit dieser Technik zu demonstrieren, wird die ultrastrukturelle 3D-Beziehung zwischen dem endoplasmatischen Retikulum und den Mitochondrien und ihren Kontaktstellen in Leberhepatozyten vorgestellt. Interorganelle Kontakte spielen eine wichtige Rolle bei der Übertragung von Ionen, Lipiden, Nährstoffen und anderen kleinen Molekülen zwischen Organellen. Trotz ihrer ersten Entdeckung in Hepatozyten gibt es jedoch noch viel über ihre physikalischen Eigenschaften, Dynamik und Funktionen zu lernen.

Interorganellenkontakte können eine Reihe von Morphologien aufweisen, die sich in der Nähe der beiden Organellen zueinander (typischerweise ~ 10-30 nm) und der Ausdehnung der Kontaktstelle (von punktuellen Kontakten bis zu größeren 3D-zisternenartigen Kontakten) unterscheiden. Die Untersuchung enger Kontakte erfordert eine hochauflösende Bildgebung, und der serielle Schnitt TEM eignet sich gut, um die ultrastrukturelle 3D-Struktur von interorganellen Kontakten während der Hepatozytendifferenzierung sowie Veränderungen in der Hepatozytenarchitektur im Zusammenhang mit Stoffwechselerkrankungen zu visualisieren.

Introduction

Seit ihrer Erfindung in den 1930er Jahren haben Elektronenmikroskope es Forschern ermöglicht, die strukturellen Bestandteile von Zellen und Geweben zu visualisieren 1,2. Die meisten Untersuchungen haben 2D-Informationen geliefert, da das Erstellen von 3D-Modellen eine sorgfältige Sammlung serieller Abschnitte, manuelle Fotografie, Negativverarbeitung, manuelle Nachverfolgung und die Erstellung und Montage von 3D-Modellen aus Glas-, Kunststoff- oder Styropor 3,4 erfordert. Fast 70 Jahre später gab es erhebliche Fortschritte in zahlreichen Aspekten des Prozesses, von der Mikroskopleistung, der seriellen Schnittsammlung, der automatisierten digitalen Bildgebung, der ausgefeilten Software und Hardware für die 3D-Rekonstruktion, Visualisierung und Analyse bis hin zu alternativen Ansätzen für das, was heute allgemein als Volume EM (vEM) bezeichnet wird. Es wird allgemein angenommen, dass diese vEM-Techniken ultrastrukturelle 3D-Informationen bei Nanometerauflösungen über Mikrometerskalen liefern und Transmissionselektronenmikroskopie (TEM) und neuere Rasterelektronenmikroskopie- (REM) Techniken umfassen. Siehe Bewertungen 5,6,7,8.

Zum Beispiel verwendet der fokussierte Ionenstrahl SEM (FIB-SEM) einen fokussierten Ionenstrahl in einem REM, um die Oberfläche des Blocks zwischen sequentiellen REM-Bildaufnahmen der Blockoberfläche wegzufräsen, was das wiederholte automatisierte Fräsen / Abbilden einer Probe ermöglicht und einen 3D-Datensatz für die Rekonstruktion 9,10 erstellt. Im Gegensatz dazu verwendet serielles Blockgesicht SEM (SBF-SEM) ein Ultramikrotom im REM, um Material von der Blockfläche vor der Bildgebung zu entfernen 11,12, während die Array-Tomographie ein zerstörungsfreier Prozess ist, der die Sammlung von seriellen Abschnitten auf Deckgläsern, Wafern oder Bändern erfordert, bevor ein automatisierter Workflow der Bildgebung des interessierenden Bereichs in sequenziellen Abschnitten im REM eingerichtet wird, um den 3D-Datensatz zu generieren 13 . Ähnlich wie bei der Array-Tomographie erfordert die serielle Schnitt-TEM (ssTEM), dass vor der Bildgebung physikalische Schnitte gesammelt werden. Diese Abschnitte werden jedoch in TEM-Rastern gesammelt und in einem TEM14,15,16 abgebildet. ssTEM kann durch Tilttomographie17,18,19 erweitert werden. Die serielle Neigungstomographie bietet die beste Auflösung in x, y und z, und obwohl sie zur Rekonstruktion ganzer Zellen20 verwendet wurde, ist sie eine ziemliche Herausforderung. Dieses Protokoll konzentriert sich auf die praktischen Aspekte von ssTEM als der am besten zugänglichen vEM-Technik, die vielen EM-Labors zur Verfügung steht, die derzeit möglicherweise keinen Zugang zu spezialisierten Schnitt- oder vEM-Instrumenten haben, aber von der Generierung von 3D-vEM-Daten profitieren würden.

Die serielle Ultramikrotomie für die 3D-Rekonstruktion wurde bisher als Herausforderung angesehen. Es war schwierig, gerade Bänder mit gleichmäßiger Schnittstärke zu schneiden, in der Lage zu sein, Bänder der richtigen Größe in der richtigen Reihenfolge auf Gittern mit ausreichender Unterstützung anzuordnen und aufzunehmen, aber ohne Gitterbalken, die Bereiche von Interesse verdeckten, und vor allem, ohne Abschnitte zu verlieren, da eine unvollständige Serie eine vollständige 3D-Rekonstruktion verhindern kann21. Verbesserungen an kommerziellen Ultramikrotomen, Diamantschneid- und Trimmmessern 22,23, elektronenluzenten Stützfolien auf Gittern 21,24 und Klebstoffen zur Unterstützung der Schnitthaftung und Bandkonservierung 13,21 sind jedoch nur einige der inkrementellen Fortschritte im Laufe der Jahre, die die Technik in vielen Labors zur Routine gemacht haben. Sobald serielle Abschnitte gesammelt wurden, ist die serielle Bildgebung in TEM einfach und kann EM-Bilder mit Subnanometer-px-Größen in x und y liefern, was eine hochauflösende Abfrage der subzellulären Strukturen ermöglicht – eine potenzielle Anforderung für viele Forschungsfragen. Die hier vorgestellte Fallstudie zeigt die Verwendung von ssTEM und 3D-Rekonstruktion bei der Untersuchung von endoplasmatischen Retikulum (ER)-Organellenkontakten in Leberhepatozyten, wo ER-Organellen-Kontakte zuerst beobachtet wurden25,26.

Während die Notaufnahme an die Kernhülle angrenzt, nimmt sie auch enge Kontakte zu zahlreichen anderen Zellorganellen auf, darunter Lysosomen, Mitochondrien, Lipidtröpfchen und die Plasmamembran27. ER-Organellen-Kontakte wurden mit dem Fettstoffwechsel28, dem Phosphoinositid- und Calcium-Signalsystem29, der Autophagieregulation und der Stressreaktion30,31 in Verbindung gebracht. Die ER-Organellenkontakte und andere interorganelle Kontakte sind hochdynamische Strukturen, die auf zelluläre Stoffwechselbedürfnisse und extrazelluläre Hinweise reagieren. Es wurde gezeigt, dass sie morphologisch in ihrer Größe und Form und den Abständen zwischen Organellenmembranenvariieren 32,33. Es wird angenommen, dass diese ultrastrukturellen Unterschiede wahrscheinlich ihre unterschiedliche Protein-Lipid-Zusammensetzung und Funktionwiderspiegeln 34,35. Es ist jedoch immer noch eine herausfordernde Aufgabe, interorganelle Kontakte zu definieren und zu analysieren36. Daher ist ein zuverlässiges und dennoch einfaches Protokoll zur Untersuchung und Charakterisierung von interorganellen Kontakten für weitere Untersuchungen erforderlich.

Da ER-Organellenkontakte bei der Membran-zu-Membran-Trennung zwischen 10 und 30 nm liegen können, war der Goldstandard für die Identifizierung in der Vergangenheit TEM. Dünnschnittiges TEM hat eine spezifische Subdomänenlokalisation für residente ER-Proteine an verschiedenen Membrankontakten37 aufgedeckt. Traditionell hat dies ER-Organellen-Kontakte mit nm-Auflösung aufgedeckt, aber oft nur eine 2D-Ansicht dieser Wechselwirkungen präsentiert. vEM-Ansätze zeigen jedoch die ultrastrukturelle Darstellung und den Kontext dieser Kontaktstellen in 3D, was eine vollständige Rekonstruktion von Kontakten und eine genauere Klassifizierung von Kontakten (Punkt vs. röhrenförmig vs. zisternalähnlich) und Quantifizierung38,39 ermöglicht. Hepatozyten sind nicht nur der erste Zelltyp, bei dem ER-Organellenkontakte beobachtet wurden25,26, sondern haben auch ein umfangreiches System anderer interorganeller Kontakte, die in ihrer Architektur und Physiologie eine wichtige Rolle spielen 28,40. Eine gründliche morphologische Charakterisierung von ER-Organellen und anderen interorganellen Kontakten in Hepatozyten fehlt jedoch noch. Dementsprechend ist die Art und Weise, wie sich interorganelle Kontakte während der Regeneration und Reparatur bilden und umgestalten, von besonderer Relevanz für die Biologie und Leberfunktion der Hepatozyten.

Protocol

Alle Tiere wurden in Übereinstimmung mit den Richtlinien des britischen Innenministeriums untergebracht, und die Gewebeentnahme wurde in Übereinstimmung mit dem UK Animal (Scientific Procedures) Act 1986 durchgeführt. 1. Fixierung und Vorbereitung der Proben Sezieren Sie das Lebergewebe in Stücke von geeigneter Größe, etwa 8 mm x 8 mm x 3 mm, und legen Sie die Stücke in warme phosphatgepufferte Kochsalzlösung (PBS, 37 ° C). Injizieren Sie Raumtempe…

Representative Results

Für diese Technik werden interessante Regionen auf der Grundlage des biologischen Forschungsziels ausgewählt und vor dem Trimmen und Schneiden von eingebettetem Gewebe identifiziert. Ebenso kann die Größe der Blockfläche durch die Forschungsfrage diktiert werden; In diesem Fall wurde die Probe so beschnitten, dass eine Blockfläche von etwa 0,3 mm x 0,15 mm übrig blieb (Abbildung 4A). Dies ermöglichte zwei Gitter von 9 seriellen Abschnitten pro Gitter, die 18 serielle Abschnitte liefe…

Discussion

Eine zugängliche vEM-Technik zur Visualisierung der Organellenstruktur und -interaktionen in 3D wird in diesem Protokoll beschrieben. Die Morphologie der interorganellen Kontakte in Hepatozyten wird hier als Fallstudie vorgestellt. Dieser Ansatz wurde jedoch auch zur Untersuchung einer Vielzahl anderer Proben und Forschungsbereiche angewendet, darunter Schwann-Zell-Endothel-Interaktionen in peripheren Nerven 45, Weibel-Palade-Körper-Biogenese in Endothelzellen46, Frachtsekretion in Nierenzellen …

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Wir danken Joanna Hanley, Rebecca Fiadeiro und Ania Straatman-Iwanowska für die fachkundige technische Unterstützung. Wir danken auch den Stefan-Labormitgliedern und Ian J. White für die hilfreichen Gespräche. J.J.B. wird durch MRC-Mittel für das MRC Laboratory of Molecular Cell Biology am UCL, Award Code MC_U12266B, unterstützt. C.J.S. wird durch MRC-Mittel für das MRC Laboratory of Molecular Cell Biology University Unit am UCL, Vergabecode MC_UU_00012/6, unterstützt. P.G. wird gefördert durch den Europäischen Forschungsrat, Förderkennzeichen ERC-2013-StG-337057.

Materials

0.22 µm syringe filter Sarstedt 83.1826.001
Aluminum trays Agar Scientific AGG3912
Amira v6 ThermoFisher https://www.thermofisher.com
Chloroform Fisher C/4960/PB08
DDSA/Dodecenyl Succinic Anhydride TAAB T027 Epon ingredient
Diamond knife DiaTOME ultra 45°
DMP-30/2,4,6-tri (Dimethylaminomethyl) phenol TAAB D032 Epon ingredient
Dumont Tweezers N5 Agar Scientific AGT5293
Fiji https://imagej.net/
Fiji TrakEM2 plugin https://imagej.net/
Formaldehyde 36% solution TAAB F003
Formvar coated slot grid Homemade Alternative: EMS diasum (FF2010-Cu)
Glass bottle with applicator rod Medisca 6258
Glass vials Fisher Scientific 15364769
Gluteraldehyde 25% solution TAAB G011
MNA/Methyl Nadic Anhydride TAAB M011 Epon ingredient
Osmium Tetroxide 2% solution TAAB O005
Potassium Ferricyanide Sigma-Aldrich P-8131
Propylene oxide Fisher Scientific E/0050/PB08
Reuseable adhesive Blue Tack
Reynolds Lead Citrate TAAB L037 Section stain
Sodium Cacodylate Sigma-Aldrich C-0250 to make 0.1 M Caco buffer
Super Glue RS Components 918-6872 Cyanoacrylate glue, Step 1.3
TAAB 812 Resin TAAB T023 Epon ingredient
Tannic acid TAAB T046
Triton X-100 Sigma-Aldrich T9284
Two part Epoxy Resin RS Components 132-605 Alternative: Step 2.13
Ultramicrotome Leica UC7
Vibrating microtome Leica 100 µm thick slices, 0.16 mm/s cutting at 1 mm amplitude .
Weldwood Original Contact cement DAP 107 Contact adhesive: Step 3.1.4

Riferimenti

  1. Knoll, M., Ruska, E. Das elektronenmikroskop. Zeitschrift für Physik. 78 (5), 318-339 (1932).
  2. von Ardenne, M. Daselektronen-rastermikroskop. Zeitschrift für Physik. 109 (9), 553-572 (1938).
  3. Bang, B. H., Bang, F. B. Graphic reconstruction of the third dimension from serial electron microphotographs. Journal of Ultrastructure Research. 1 (2), 138-139 (1957).
  4. Birch-Andersen, A. Reconstruction of the nuclear sites of Salmonella typhimurium from electron micrographs of serial sections. Journal of General Microbiology. 13 (2), 327-329 (1955).
  5. Denk, W., Horstmann, H. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biology. 2 (11), 329 (2004).
  6. Peddie, C. J., Collinson, L. M. Exploring the third dimension: volume electron microscopy comes of age. Micron. 61, 9-19 (2014).
  7. Titze, B., Genoud, C. Volume scanning electron microscopy for imaging biological ultrastructure. Biology of the Cell. 108 (11), 307-323 (2016).
  8. Kornfeld, J., Denk, W. Progress and remaining challenges in high-throughput volume electron microscopy. Current Opinion in Neurobiology. 50, 261-267 (2018).
  9. Heymann, J. A., et al. Site-specific 3D imaging of cells and tissues with a dual beam microscope. Journal of Structural Biology. 155 (1), 63-73 (2006).
  10. Knott, G., Marchman, H., Wall, D., Lich, B. Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. Journal of Neuroscience. 28 (12), 2959-2964 (2008).
  11. Leighton, S. B. SEM images of block faces, cut by a miniature microtome within the SEM – a technical note. Scanning Electron Microscopy. , 73-76 (1981).
  12. Martone, M. E., Deerinck, T. J., Yamada, N., Bushong, E., Ellisman, M. H. Correlated 3D light and electron microscopy: use of high voltage electron microscopy and electron tomography for imaging large biological structures. Journal of Histotechnology. 23 (3), 261-270 (2000).
  13. Micheva, K. D., Smith, S. J. Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron. 55 (1), 25-36 (2007).
  14. Sjostrand, F. S. Ultrastructure of retinal rod synapses of the guinea pig eye as revealed by three-dimensional reconstructions from serial sections. Journal of Ultrastructure Research. 2 (1), 122-170 (1958).
  15. Ware, R. W. Three-dimensional reconstruction from serial sections. International Review of Cytology. 40, 325 (1975).
  16. Stevens, J. K., Davis, T. L., Friedman, N., Sterling, P. A systematic approach to reconstructing microcircuitry by electron microscopy of serial sections. Cognitive Brain Research. 2 (3), 265-293 (1980).
  17. Hoppe, W. Three-dimensional electron microscopy. Annual Review of Biophysics. 10, 563-592 (1981).
  18. Frank, J. . Electron tomography: methods for three-dimensional visualization of structures in the cell. , (2008).
  19. Baumeister, W. Electron tomography: towards visualizing the molecular organization of the cytoplasm. Current Opinion in Structural Biology. 12 (5), 679-684 (2002).
  20. Hoog, J. L., Schwartz, C., Noon, A. T., O’Toole, E. T. Organization of interphase microtubules in fission yeast analyzed by electron tomography. Developmental Cell. 12 (3), 349-361 (2007).
  21. Harris, K. M., Perry, E., Bourne, J., Feinberg, M., Ostroff, L., Hurlburt, J. Uniform serial sectioning for transmission electron microscopy. Journal of Neuroscience. 26 (47), 12101-12103 (2006).
  22. Jesior, J. C. Use of low-angle diamond knives leads to improved ultrastructural preservation of ultrathin sections. Scanning Microscopy Supplement. 3, 147-152 (1989).
  23. Studer, D., Gnaegi, H. Minimal compression of ultrathin sections with use of an oscillating diamond knife. Journal of Microscopy. 197, 94-100 (2000).
  24. Gay, H., Anderson, T. F. Serial sections for electron microscopy. Science. 120 (3130), 1071-1073 (1954).
  25. Bernhard, W., Rouiller, C. Close topographical relationship between mitochondria and ergastoplasm of liver cells in a definite phase of cellular activity. The Journal of Biophysical and Biochemical Cytology. 2, 73-78 (1956).
  26. Palade, G. E. An electron microscope study of the mitochondrial structure. The Journal of Histochemistry & Cytochemistry. 1 (4), 188-211 (1953).
  27. Wu, H., Carvalho, P., Voeltz, G. K. Here, there, and everywhere: The importance of ER membrane contact sites. Science. 361 (6401), (2018).
  28. Vance, J. E. Inter-organelle membrane contact sites: implications for lipid metabolism. Biology Direct. 15 (1), 24 (2020).
  29. Stefan, C. J. Endoplasmic reticulum-plasma membrane contacts: Principals of phosphoinositide and calcium signaling. Current Opinion in Cell Biology. 63, 125-134 (2020).
  30. Zaman, M. F., Nenadic, A., Radojicic, A., Rosado, A., Beh, C. T. Sticking with it: ER-PM membrane contact sites as a coordinating nexus for regulating lipids and proteins at the cell cortex. Frontiers in Cell and Developmental Biology. 8, 675 (2020).
  31. van Vliet, A. R., Sassano, M. L., Agostinis, P. The unfolded protein response and membrane contact sites: tethering as a matter of life and death. Contatta. 1, 1-15 (2018).
  32. Cohen, S., Valm, A. M., Lippincott-Schwartz, J. Interacting organelles. Current Opinion in Cell Biology. 53, 84-91 (2018).
  33. Hariri, H., et al. Lipid droplet biogenesis is spatially coordinated at ER-vacuole contacts under nutritional stress. EMBO Reports. 19 (1), 57-72 (2018).
  34. Stefan, C. J., Trimble, W. S., Grinstein, S., Drin, G. Membrane dynamics and organelle biogenesis-lipid pipelines and vesicular carriers. BMC Biology. 15 (1), 102 (2017).
  35. Eisenberg-Bord, M., Shai, N., Schuldiner, M., Bohnert, M. A tether is a tether is a tether: tethering at membrane contact sites. Developmental Cell. 39 (4), 395-409 (2016).
  36. Scorrano, L., De Matteis, M. A., Emr, S., Giordano, F. Coming together to define membrane contact sites. Nature Communications. 10 (1), 1287 (2019).
  37. Lak, B., Li, S., Belevich, I., Sree, S. Specific subdomain localization of ER resident proteins and membrane contact sites resolved by electron microscopy. European Journal of Cell Biology. 100 (7), 151180 (2021).
  38. Collado, J., Kalemanov, M., Campelo, F., Bourgoint, C. Tricalbin-mediated contact sites control ER curvature to maintain plasma membrane integrity. Developmental Cell. 51 (4), 476-487 (2019).
  39. West, M., Zurek, N., Hoenger, A., Voeltz, G. K. A 3D analysis of yeast ER structure reveals how ER domains are organized by membrane curvature. Journal of Cell Biology. 193 (2), 333-346 (2011).
  40. Ilacqua, N., Anastasia, I., Raimondi, A., Lemieux, P. A three-organelle complex made by wrappER contacts with peroxisomes and mitochondria responds to liver lipid flux changes. Journal of Cell Science. 135 (5), 259091 (2022).
  41. Cardona, A., Saalfeld, S., Schindelin, J., Arganda-Carreras, I. TrakEM2 software for neural circuit reconstruction. PLoS One. 7 (6), 38011 (2012).
  42. Stalling, D., Westerhoff, M., Hege, H. -. C. Amira: A highly interactive system for visual data analysis. The Visualization Handbook. 38, 749-767 (2005).
  43. Hsieh, T. S., Chen, Y. J., Chang, C. L., Lee, W. R., Liou, J. Cortical actin contributes to spatial organization of ER-PM junctions. Molecular Biology of the Cell. 28 (23), 3171-3180 (2017).
  44. Anastasia, I., Ilacqua, N., Raimondi, A., Lemieux, P. Mitochondria-rough-ER contacts in the liver regulate systemic lipid homeostasis. Cell Reports. 34 (11), 108873 (2021).
  45. Cattin, A. L., Burden, J. J., Van Emmenis, L., Mackenzie, F. E. Macrophage-Induced Blood Vessels Guide Schwann Cell-Mediated Regeneration of Peripheral Nerves. Cell. 162 (5), 1127-1139 (2015).
  46. Lopes-da-Silva, M., et al. A GBF1-dependent mechanism for environmentally responsive regulation of ER-Golgi transport. Developmental Cell. 49 (5), 786-801 (2019).
  47. Banushi, B., Forneris, F., Straatman-Iwanowska, A., Strange, A. Regulation of post-Golgi LH3 trafficking is essential for collagen homeostasis. Nature Communications. 7, 12111 (2016).
  48. Rey, S. A., et al. Ultrastructural and functional fate of recycled vesicles in hippocampal synapses. Nature Communications. 6, 8043 (2015).
  49. Belicova, L., Repnik, U., Delpierre, J., Gralinska, E. Anisotropic expansion of hepatocyte lumina enforced by apical bulkheads. Journal of Cell Biology. 220 (10), 202303003 (2021).
  50. Kizilyaprak, C., Daraspe, J., Humbel, B. M. Focused ion beam scanning electron microscopy in biology. Journal of Microscopy. 254 (3), 109-114 (2014).
  51. Xu, C. S., Hayworth, K. J., Lu, Z., Grob, P. Enhanced FIB-SEM systems for large-volume 3D imaging. Elife. 6, 1-36 (2017).
  52. Parlakgül, G., Arruda, A. P., Cagampan, E., Pang, S. High resolution 3D imaging of liver reveals a central role for subcellular architectural organization in metabolism. bioRxiv. , (2020).
  53. Guerin, C. J., Kremer, A., Borghgraef, P., Lippens, S. Targeted studies using serial block face and focused ion beam scan electron microscopy. The Journal of Visualized Experiments: JoVE. (150), e59480 (2019).
  54. Kremer, A., et al. A workflow for 3D-CLEM investigating liver tissue. Journal of Microscopy. 281 (3), 231-242 (2021).
  55. Hayat, M. . Principles and techniques of electron microscopy: biological applications. , (2000).
  56. Wisse, E., Braet, F., Duimel, H., Vreuls, C. Fixation methods for electron microscopy of human and other liver. World Journal of Gastroenterology. 16 (23), 2851-2866 (2010).
  57. Hanley, J., Dhar, D. K., Mazzacuva, F., Fiadeiro, R. Vps33b is crucial for structural and functional hepatocyte polarity. Journal of Hepatology. 66 (5), 1001-1011 (2017).
  58. Deerinck, T. J., Bushong, E. A., Thor, A., Ellisman, M. H. NCMIR methods for 3D EM: a new protocol for preparation of biological specimens for serial block face scanning electron microscopy. Microscopy. 1, 6-8 (2010).
  59. Miranda, K., Girard-Dias, W., Attias, M., de Souza, W., Ramos, I. Three dimensional reconstruction by electron microscopy in the life sciences: An introduction for cell and tissue biologists. Molecular Reproduction and Development. 82 (7-8), 530-547 (2015).
  60. Yamaguchi, M., Chibana, H. A method for obtaining serial ultrathin sections of microorganisms in transmission electron microscopy. The Journal of Visualized Experiments: JoVE. (131), e56235 (2018).
  61. Hall, D. H., Hartwieg, E., Nguyen, K. C. Modern electron microscopy methods for C. elegans. Methods in Cell Biology. 107, 93-149 (2012).
  62. Hagler, H. K. Ultramicrotomy for biological electron microscopy. Methods in Molecular Biology. 369, 67-96 (2007).
  63. Arganda-Carreras, I., Beichel, R. R., Sonka, M. Consistent and elastic registration of histological sections using vector-spline regularization. Computer vision approaches to medical image analysis, CVAMIA 2006, Lecture Notes in Computer Science. 4241, 85-95 (2006).
  64. Belevich, I., Joensuu, M., Kumar, D., Vihinen, H., Jokitalo, E. Microscopy image browser: a platform for segmentation and analysis of multidimensional datasets. PLoS Biology. 14 (1), 1002340 (2016).
  65. Fiala, J. C. Reconstruct: a free editor for serial section microscopy. Journal of Microscopy. 218, 52-61 (2005).
  66. Kremer, J. R., Mastronarde, D. N., McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD). Journal of Structural Biology. 116 (1), 71-76 (1996).
  67. Iudin, A., Korir, P. K., Salavert-Torres, J., Kleywegt, G. J., Patwardhan, A. EMPIAR: a public archive for raw electron microscopy image data. Nature Methods. 13 (5), 387-388 (2016).
  68. Xu, C. S., Pang, S., Shtengel, G., Muller, A. An open-access volume electron microscopy atlas of whole cells and tissues. Nature. 599 (7883), 147-151 (2021).
  69. Karabag, C., et al. Semantic segmentation of HeLa cells: An objective comparison between one traditional algorithm and four deep-learning architectures. PLoS One. 15 (10), 0230605 (2020).
  70. Heinrich, L., Bennett, D., Ackerman, D., Park, W. Whole-cell organelle segmentation in volume electron microscopy. Nature. 599 (7883), 141-146 (2021).
  71. Kim, J. S., Greene, M. J., Zlateski, A., Lee, K. Space-time wiring specificity supports direction selectivity in the retina. Nature. 509 (7500), 331-336 (2014).
  72. Spiers, H., Songhurst, H., Nightingale, L., de Folter, J. Deep learning for automatic segmentation of the nuclear envelope in electron microscopy data, trained with volunteer segmentations. Traffic. 22 (7), 240-253 (2021).
  73. Hasan, N. M., Gupta, A., Polishchuk, E., Yu, C. H. Molecular events initiating exit of a copper-transporting ATPase ATP7B from the trans-Golgi network. The Journal of Biological Chemistry. 287 (43), 36041-36050 (2012).
  74. Stoeck, I. K., Lee, J. Y., Tabata, K., Romero-Brey, I. Hepatitis C virus replication depends on endosomal cholesterol homeostasis. The Journal of Virology. 92 (1), 01196 (2018).
  75. Ma, X., Qian, H., Chen, A., Ni, H. M., Ding, W. X. Perspectives on mitochondria-ER and mitochondria-lipid droplet contact in hepatocytes and hepatic lipid metabolism. Cells. 10 (9), 2273 (2021).
check_url/it/63496?article_type=t

Play Video

Citazione di questo articolo
Chun Chung, G. H., Gissen, P., Stefan, C. J., Burden, J. J. Three-dimensional Characterization of Interorganelle Contact Sites in Hepatocytes using Serial Section Electron Microscopy. J. Vis. Exp. (184), e63496, doi:10.3791/63496 (2022).

View Video