Summary

Zebrafish Corneal Wound Healing: dall'abrasione all'analisi di imaging della chiusura della ferita

Published: March 01, 2022
doi:

Summary

Questo protocollo si concentra sul danneggiamento della superficie oculare del pesce zebra attraverso l’abrasione per valutare la successiva chiusura della ferita a livello cellulare. Questo approccio sfrutta una bava oculare per rimuovere parzialmente l’epitelio corneale e utilizza la microscopia elettronica a scansione per tracciare i cambiamenti nella morfologia cellulare durante la chiusura della ferita.

Abstract

Come la superficie trasparente dell’occhio, la cornea è strumentale per la visione chiara. A causa della sua posizione, questo tessuto è soggetto a insulti ambientali. In effetti, le lesioni oculari più frequentemente riscontrate clinicamente sono quelle alla cornea. Mentre la guarigione delle ferite corneali è stata ampiamente studiata nei piccoli mammiferi (cioè topi, ratti e conigli), gli studi di fisiologia corneale hanno trascurato altre specie, incluso il pesce zebra, nonostante il pesce zebra sia un classico modello di ricerca.

Questo rapporto descrive un metodo per eseguire un’abrasione corneale sul pesce zebra. La ferita viene eseguita in vivo su pesci anestetizzati utilizzando una bava oculare. Questo metodo consente una ferita epiteliale riproducibile, lasciando intatto il resto dell’occhio. Dopo l’abrasione, la chiusura della ferita viene monitorata nel corso di 3 ore, dopo di che la ferita viene rielettileializzata. Utilizzando la microscopia elettronica a scansione, seguita dall’elaborazione delle immagini, la forma della cellula epiteliale e le protrusioni apicali possono essere studiate per studiare i vari passaggi durante la chiusura della ferita epiteliale corneale.

Le caratteristiche del modello zebrafish consentono lo studio della fisiologia del tessuto epiteliale e del comportamento collettivo delle cellule epiteliali quando il tessuto viene sfidato. Inoltre, l’uso di un modello privato dell’influenza del film lacrimale può produrre nuove risposte per quanto riguarda la risposta corneale allo stress. Infine, questo modello permette anche la delineazione degli eventi cellulari e molecolari coinvolti in qualsiasi tessuto epiteliale sottoposto ad una ferita fisica. Questo metodo può essere applicato alla valutazione dell’efficacia del farmaco nei test preclinici.

Introduction

Poiché la maggior parte degli epiteli sono a contatto con l’ambiente esterno, sono soggetti a lesioni fisiche, rendendoli adatti per lo studio dei processi di guarigione delle ferite. Tra i tessuti ben studiati, la cornea è un modello estremamente utile nello studio degli aspetti cellulari e molecolari della guarigione delle ferite. Come superficie esterna trasparente, fornisce protezione fisica all’occhio ed è il primo elemento a focalizzare la luce sulla retina. Mentre la struttura e la composizione cellulare della retina differiscono tra la specie1, questi elementi della cornea sono generalmente simili in tutti gli occhi di tipo camera, indipendentemente dalla specie.

La cornea è composta da tre strati principali2. Il primo e più esterno strato è l’epitelio, che viene costantemente rinnovato per garantirne la trasparenza. Il secondo strato è lo stroma, che contiene cellule sparse, chiamate cheratociti, all’interno di uno spesso strato di fibre di collagene rigorosamente organizzate. Il terzo e più interno strato è l’endotelio, che consente la diffusione di nutrienti e liquidi dalla camera anteriore agli strati esterni. Le cellule epiteliali e stromali interagiscono attraverso fattori di crescita e citochine3. Questa interazione è evidenziata dalla rapida apoptosi e dalla successiva proliferazione dei cheratociti dopo danno epiteliale 4,5. In caso di una ferita più profonda, come una puntura, i cheratociti prendono parte attiva al processo di guarigione6.

Essendo a contatto con l’ambiente esterno, le lesioni fisiche corneali sono comuni. Molti di loro sono causati da piccoli oggetti estranei7, come sabbia o polvere. Il riflesso dello sfregamento degli occhi può portare a estese abrasioni epiteliali e rimodellamento corneale8. Secondo le dimensioni e la profondità della ferita, queste lesioni fisiche sono dolorose e richiedono diversi giorni per guarire9. Le caratteristiche ottimali di guarigione delle ferite di un modello facilitano la comprensione degli aspetti cellulari e molecolari della chiusura della ferita. Inoltre, tali modelli si sono dimostrati utili anche per testare nuove molecole con il potenziale di accelerare la guarigione corneale, come precedentemente dimostrato10,11.

Il protocollo qui descritto mira a utilizzare il pesce zebra come modello rilevante per studiare le lesioni fisiche corneali. Questo modello è molto conveniente per gli studi di screening farmacologico in quanto consente di aggiungere molecole direttamente all’acqua del serbatoio e, quindi, di entrare in contatto con una cornea curativa. I dettagli forniti qui aiuteranno gli scienziati a eseguire i loro studi sul modello di zebrafish. La lesione in vivo viene eseguita con una bava oculare opaca. L’impatto sulle cellule epiteliali adiacenti o a distanza da esso può essere analizzato rimuovendo specificamente l’epitelio corneale centrale. Negli ultimi anni, numerosi rapporti si sono concentrati su tale metodo sulla cornea dei roditori 12,13,14,15,16,17; tuttavia, ad oggi, solo un singolo rapporto ha applicato questo metodo al pesce zebra18.

A causa della sua semplicità, la ferita fisica è utile per delineare il ruolo delle cellule epiteliali nella chiusura della ferita. Un altro modello ben consolidato di danno corneale è l’ustione chimica, in particolare l’ustione alcalina 19,20,21. Tuttavia, un tale approccio danneggia indirettamente l’intera superficie oculare, compresa la cornea periferica e lo stroma corneale19. In effetti, le ustioni alcaline potenzialmente inducono ulcere corneali, perforazioni, opacizzazione epiteliale e rapida neovascolarizzazione22, e l’esito incontrollabile delle ustioni alcaline squalifica tale approccio per gli studi generali di guarigione delle ferite. Numerosi altri metodi sono utilizzati anche per studiare la guarigione delle ferite corneali secondo il particolare focus dello studio in questione (ad esempio, debridement epiteliale completo23, la combinazione di lesioni chimiche e meccaniche per ferite a spessore parziale24, ablazione laser ad eccimeri per ferite che si estendono allo stroma25). L’uso di una bava oculare limita il punto focale alla risposta epiteliale alla ferita e fornisce una ferita altamente riproducibile.

Come con ogni metodo di inflizione della ferita, l’uso di una bava oculare presenta vantaggi e svantaggi. Lo svantaggio principale è che la risposta essendo per lo più epiteliale, non riflette perfettamente le abrasioni osservate in ambito clinico. Tuttavia, questo metodo presenta numerosi vantaggi, tra cui la facilità con cui può essere impostato ed eseguito, la sua precisione, la sua riproducibilità e il fatto che non sia invasivo, rendendolo un metodo ben tollerato dagli animali.

Protocol

Tutti gli esperimenti sono stati approvati dal consiglio nazionale per gli esperimenti sugli animali. 1. Preparativi Preparare in anticipo la soluzione madre di tricaina utilizzata per l’anestesia26 (soluzione madre allo 0,4% utilizzata in questo protocollo). Utilizzare guanti e tenere i materiali in una cappa aspirante quando possibile. Per 50 ml di una soluzione allo 0,4%, pesare 200 mg di polvere di tricaina in un tubo da 50 ml. Sci…

Representative Results

Questo studio descrive un metodo che utilizza una bava oftalmica in esperimenti di guarigione delle ferite corneali zebrafish. Il metodo è stato modificato da studi precedenti sui topi, dove la bava ha dimostrato di rimuovere gli strati cellulari epiteliali in modo efficiente13. Le sfide nel ferimento corneale del pesce zebra includono le dimensioni relativamente piccole dell’occhio e, nel caso di esperimenti che richiedono tempo, la necessità di mantenere un flusso d’acqua costante attraverso l…

Discussion

Le lesioni fisiche corneali sono la causa più comune di visite dei pazienti oftalmologici in ospedale. Pertanto, è importante stabilire modelli pertinenti per lo studio di diversi aspetti della fisiopatologia corneale. Finora, il topo è il modello più comunemente usato per lo studio della guarigione delle ferite corneali. Tuttavia, l’aggiunta di colliri sugli occhi feriti murini per convalidare l’impatto di farmaci specifici sulla guarigione delle ferite corneali può essere difficile. A questo proposito, il modello …

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Gli autori ringraziano Pertti Panula per l’accesso all’unità Zebrafish e Henri Koivula per la guida e l’aiuto con gli esperimenti di zebrafish. Questa ricerca è stata sostenuta dall’Accademia di Finlandia, dalla Fondazione Jane e Aatos Erkko, dalla Fondazione culturale finlandese e dal programma ATIP-Avenir. L’imaging è stato eseguito presso l’unità di microscopia elettronica e l’unità di microscopia ottica, Istituto di biotecnologia, supportato da HiLIFE e Biocenter Finland.

Materials

0.1M Na-PO4 (sodium phosphate buffer), pH 7.4 in-house Solution is prepared from 1M sodium phosphate buffer (1M Na2HPO4 adjusted to pH 7.4 with 1M NaH2PO4).
0.2M Na-PO4 (sodium phosphate buffer), pH 7.4 in-house Solution is prepared from 1M sodium phosphate buffer (1M Na2HPO4 adjusted to pH 7.4 with 1M NaH2PO4).
0.5mm burr tips Alger Equipment Company BU-5S
1M Tris, pH 8.8 in-house
adhesive tabs Agar Scientific G3347N
Algerbrush burr, Complete instrument Alger Equipment Company BR2-5
Cotton swaps Heinz Herenz Hamburg 1030128
Dissecting plate in-house
Dissecting tools Fine Science Tools
double-distilled water in-house
Eppedorf tubes, 2ml any provider
Ethyl 3-aminobenzoate methanesulfonate salt Sigma A5040 Caution: causes irritation.
Glutaraldehyde, 50% aqueous solution, grade I Sigma G7651 Caution: toxic.
Lidocaine hydrochloride Sigma L5647 Caution: toxic.
mounts Agar Scientific G301P
Petri dish Thermo Scientific 101VR20
pH indicator strips Macherey-Nagel 92110
Plastic spoons any provider
Plastic tubes, 15 ml Greiner Bio-One 188271
Plastic tubes, 50 ml Greiner Bio-One 227261
Scanning electron microscope FEI Quanta 250 FEG
Soft sponge any provider
Sputter coater Quorum Technologies GQ150TS
Stereomicroscope Leica

Riferimenti

  1. Baden, T., Euler, T., Berens, P. Understanding the retinal basis of vision across species. Nature Reviews.Neuroscience. 21 (1), 5-20 (2020).
  2. Nishida, T., Saika, S., Morishige, N., Manis, M. J., Holland, E. J. Cornea and sclera: Anatomy and physiology. Cornea: Fundamentals, diagnosis and management, 4th ed. , 1-22 (2017).
  3. Wilson, S. E., Liu, J. J., Mohan, R. R. Stromal-epithelial interactions in the cornea. Progress in Retinal and Eye Research. 18 (3), 293-309 (1999).
  4. Wilson, S. E., et al. Epithelial injury induces keratocyte apoptosis: hypothesized role for the interleukin-1 system in the modulation of corneal tissue organization and wound healing. Experimental Eye Research. 62 (4), 325-327 (1996).
  5. Zieske, J. D., Guimaraes, S. R., Hutcheon, A. E. Kinetics of keratocyte proliferation in response to epithelial debridement. Experimental Eye Research. 72 (1), 33-39 (2001).
  6. West-Mays, J. A., Dwivedi, D. J. The keratocyte: corneal stromal cell with variable repair phenotypes. The International Journal of Biochemistry & Cell Biology. 38 (10), 1625-1631 (2006).
  7. Ahmed, F., House, R. J., Feldman, B. H. Corneal abrasions and corneal foreign bodies. Primary Care. 42 (3), 363-375 (2015).
  8. Ben-Eli, H., Erdinest, N., Solomon, A. Pathogenesis and complications of chronic eye rubbing in ocular allergy. Current Opinion in Allergy and Clinical Immunology. 19 (5), 526-534 (2019).
  9. Wilson, S. A., Last, A. Management of corneal abrasions. American Family Physician. 70 (1), 123-128 (2004).
  10. Nagata, M., et al. JBP485 promotes corneal epithelial wound healing. Scientific Reports. 5, 14776 (2015).
  11. Wang, X., et al. MANF promotes diabetic corneal epithelial wound healing and nerve regeneration by attenuating hyperglycemia-induced endoplasmic reticulum stress. Diabetes. 69 (6), 1264-1278 (2020).
  12. Li, F. J., et al. Evaluation of the AlgerBrush II rotating burr as a tool for inducing ocular surface failure in the New Zealand White rabbit. Experimental Eye Research. 147, 1-11 (2016).
  13. Kalha, S., Kuony, A., Michon, F. Corneal epithelial abrasion with ocular burr as a model for cornea wound healing. Journal of Visualized Experiments:JoVE. (137), e58071 (2018).
  14. Kalha, S., et al. Bmi1+ progenitor cell dynamics in murine cornea during homeostasis and wound healing. Stem Cells. 36 (4), 562-573 (2018).
  15. Park, M., et al. Visualizing the contribution of keratin-14(+) limbal epithelial precursors in corneal wound healing. Stem Cell Reports. 12 (1), 14-28 (2019).
  16. Kuony, A., et al. Ectodysplasin-A signaling is a key integrator in the lacrimal gland-cornea feedback loop. Development. 146 (14), (2019).
  17. Farrelly, O., et al. Two-photon live imaging of single corneal stem cells reveals compartmentalized organization of the limbal niche. Cell Stem Cell. 28 (7), 1233-1247 (2021).
  18. Ikkala, K., Michon, F., Stratoulias, V. Unilateral Zebrafish corneal injury induces bilateral cell plasticity supporting wound closure. Scientific Reports. , (2021).
  19. Ormerod, L. D., Abelson, M. B., Kenyon, K. R. Standard models of corneal injury using alkali-immersed filter discs. Investigative Ophthalmology & Visual Science. 30 (10), 2148-2153 (1989).
  20. Anderson, C., Zhou, Q., Wang, S. An alkali-burn injury model of corneal neovascularization in the mouse. Journal of visualized experiments: JoVE. (86), e51159 (2014).
  21. Choi, H., et al. Comprehensive modeling of corneal alkali injury in the rat eye. Current Eye Research. 42 (10), 1348-1357 (2017).
  22. Singh, P., Tyagi, M., Kumar, Y., Gupta, K. K., Sharma, P. D. Ocular chemical injuries and their management. Oman Journal of Ophthalmology. 6 (2), 83-86 (2013).
  23. Pal-Ghosh, S. BALB/c and C57BL6 mouse strains vary in their ability to heal corneal epithelial debridement wounds. Experimental Eye Research. 87 (5), 478-486 (2008).
  24. Chen, J. J., Tseng, S. C. Abnormal corneal epithelial wound healing in partial-thickness removal of limbal epithelium. Investigative Ophthalmology & Visual Science. 32 (8), 2219-2233 (1991).
  25. Xeroudaki, M., Peebo, B., Germundsson, J., Fagerholm, P., Lagali, N. RGTA in corneal wound healing after transepithelial laser ablation in a rabbit model: a randomized, blinded, placebo-controlled study. Acta Ophthalmologica. 94 (7), 685-691 (2016).
  26. . The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio Available from: https://zfinorg/zf_info/zfbook/zfbk.html (2000)
  27. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  28. Xu, C., Volkery, S., Siekmann, A. F. Intubation-based anesthesia for long-term time-lapse imaging of adult zebrafish. Nature Protocols. 10 (12), 2064-2073 (2015).
  29. Crosson, C. E., Klyce, S. D., Beuerman, R. W. Epithelial wound closure in the rabbit cornea. A biphasic process. Investigative Ophthalmology & Visual Science. 27 (4), 464-473 (1986).
  30. Parlanti, P., et al. Axonal debris accumulates in corneal epithelial cells after intraepithelial corneal nerves are damaged: A focused Ion Beam Scanning Electron Microscopy (FIB-SEM) study. Experimental Eye Research. 194, 107998 (2020).
  31. Zhao, X. C., et al. The zebrafish cornea: structure and development. Investigative Ophthalmology & Visual Science. 47 (10), 4341-4348 (2006).
  32. Richardson, R., et al. Re-epithelialization of cutaneous wounds in adult zebrafish combines mechanisms of wound closure in embryonic and adult mammals. Development. 143 (12), 2077-2088 (2016).
  33. van Loon, A. P., Erofeev, I. S., Maryshev, I. V., Goryachev, A. B., Sagasti, A. Cortical contraction drives the 3D patterning of epithelial cell surfaces. The Journal of Cell Biology. 219 (3), (2020).
  34. Vihtelic, T. S., Hyde, D. R. Light-induced rod and cone cell death and regeneration in the adult albino zebrafish (Danio rerio) retina. Journal of Neurobiology. 44 (3), 289-307 (2000).
  35. Poss, K. D., Wilson, L. G., Keating, M. T. Heart regeneration in zebrafish. Science. 298 (5601), 2188-2190 (2002).
  36. Becker, T., Wullimann, M. F., Becker, C. G., Bernhardt, R. R., Schachner, M. Axonal regrowth after spinal cord transection in adult zebrafish. The Journal of Comparative Neurology. 377 (4), 577-595 (1997).
  37. Hu, X., et al. Sirt6 deficiency impairs corneal epithelial wound healing. Aging. 10 (8), 1932-1946 (2018).
  38. Ksander, B. R., et al. ABCB5 is a limbal stem cell gene required for corneal development and repair. Nature. 511 (7509), 353-357 (2014).
  39. Pan, Y. A., et al. Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish. Development. 140 (13), 2835-2846 (2013).
check_url/it/63605?article_type=t

Play Video

Citazione di questo articolo
Ikkala, K., Raatikainen, S., Michon, F. Zebrafish Corneal Wound Healing: From Abrasion to Wound Closure Imaging Analysis. J. Vis. Exp. (181), e63605, doi:10.3791/63605 (2022).

View Video