Summary

Estabelecimento de Xenoenxertos Derivados de Pacientes com Zebrafish de Câncer de Pâncreas para Teste de Quimiosensibilidade

Published: May 12, 2023
doi:

Summary

Os modelos pré-clínicos visam avançar no conhecimento da biologia do câncer e predizer a eficácia do tratamento. Este trabalho descreve a geração de xenoenxertos derivados de pacientes (zPDXs) à base de peixe-zebra com fragmentos de tecido tumoral. Os zPDXs foram tratados com quimioterapia, cujo efeito terapêutico foi avaliado em termos de apoptose celular do tecido transplantado.

Abstract

O câncer é uma das principais causas de morte no mundo, e a incidência de muitos tipos de câncer continua aumentando. Muito se avançou em termos de rastreio, prevenção e tratamento; no entanto, ainda faltam modelos pré-clínicos que predizem o perfil quimiossensível de pacientes com câncer. Para preencher essa lacuna, um modelo de xenoenxerto derivado do paciente in vivo foi desenvolvido e validado. O modelo foi baseado em embriões de zebrafish (Danio rerio) aos 2 dias pós-fecundação, os quais foram utilizados como receptores de fragmentos de xenoenxerto de tecido tumoral retirados da peça cirúrgica de uma paciente.

Vale ressaltar também que as amostras bióticas não foram digeridas ou desagregadas, a fim de manter o microambiente tumoral, o que é crucial para analisar o comportamento tumoral e a resposta à terapia. O protocolo detalha um método para estabelecer xenoenxertos derivados de pacientes (zPDXs) baseados em peixe-zebra a partir da ressecção cirúrgica de tumor sólido primário. Após triagem por um anatomopatologista, o espécime é dissecado com lâmina de bisturi. Tecido necrótico, vasos ou tecido adiposo são removidos e, em seguida, picados em pedaços de 0,3 mm x 0,3 mm x 0,3 mm.

As peças são então marcadas fluorescentemente e xenotransplantadas para o espaço perivitelino de embriões de peixe-zebra. Um grande número de embriões pode ser processado a baixo custo, permitindo análises in vivo de alto rendimento da quimiossensibilidade de zPDXs a múltiplas drogas anticâncer. Imagens confocais são rotineiramente adquiridas para detectar e quantificar os níveis apoptóticos induzidos pelo tratamento quimioterápico em comparação com o grupo controle. O procedimento de xenoenxerto tem uma vantagem de tempo significativa, uma vez que pode ser concluído em um único dia, proporcionando uma janela de tempo razoável para realizar uma triagem terapêutica para ensaios co-clínicos.

Introduction

Um dos problemas da pesquisa clínica do câncer é que o câncer não é uma doença única, mas uma variedade de doenças diferentes que podem evoluir ao longo do tempo, exigindo tratamentos específicos dependendo das características do próprio tumor e do paciente1. Consequentemente, o desafio é avançar em direção à pesquisa do câncer orientada ao paciente, a fim de identificar novas estratégias personalizadas para a predição precoce dos resultados do tratamento do câncer2. Isso é particularmente relevante para o adenocarcinoma ductal pancreático (ADP), por ser considerado um câncer de difícil tratamento, com sobrevida em 5 anos de 11%3.

O diagnóstico tardio, a rápida progressão e a falta de terapias eficazes continuam sendo os problemas clínicos mais prementes da ADP. O principal desafio é, portanto, modelar o paciente e identificar biomarcadores que possam ser aplicados na clínica para selecionar a terapia mais eficaz de acordo com a medicina personalizada 4,5,6. Ao longo do tempo, novas abordagens têm sido propostas para modelar doenças oncológicas: organoides derivados do paciente (PDOs) e xenoenxertos derivados do paciente de camundongo (mPDXs) originados de uma fonte de tecido tumoral humano. Eles têm sido usados para reproduzir a doença para estudar a resposta e a resistência à terapia, bem como a recorrência da doença 7,8,9.

Da mesma forma, o interesse em modelos de xenoenxerto derivado do paciente (zPDX) baseado em peixe-zebra tem aumentado, graças às suas características únicas epromissoras10, representando uma ferramenta rápida e de baixo custo para a pesquisa docâncer11,12. Os modelos zPDX requerem apenas um pequeno tamanho de amostra tumoral, o que torna viável o rastreamento de quimioterapiaem alto rendimento13. A técnica mais comumente utilizada para modelos zPDX baseia-se na digestão completa da amostra e implantação das populações celulares primárias, que reproduz parcialmente o tumor, mas tem como desvantagens a falta de microambiente tumoral e crosstalk entre células malignas esaudáveis14.

Este trabalho mostra como zPDXs podem ser usados como um modelo pré-clínico para identificar o perfil de quimiossensibilidade de pacientes com câncer de pâncreas. A valiosa estratégia facilita o processo de xenoenxerto, uma vez que não há necessidade de expansão celular, permitindo a aceleração da triagem quimioterápica. A força do modelo é que todos os componentes do microambiente são mantidos como estão no tecido do paciente com câncer, pois, como se sabe, o comportamento do tumor depende de sua interação15,16. Isso é altamente favorável em relação aos métodos alternativos na literatura, pois é possível preservar a heterogeneidade tumoral e contribuir para melhorar a previsibilidade do resultado do tratamento e a recidiva de forma paciente-específica, permitindo que o modelo zPDX seja utilizado em ensaios coclínicos. Este artigo descreve as etapas envolvidas na confecção do modelo zPDX, começando com um pedaço de ressecção tumoral do paciente e tratando-o para analisar a resposta à quimioterapia.

Protocol

O Ministério da Saúde Pública italiano aprovou todas as experiências com animais descritas, em conformidade com a Diretiva 2010/63/UE relativa à utilização e aos cuidados a prestar aos animais. O estudo foi aprovado pelo Comitê de Ética local, sob o registro número 70213. Consentimento informado foi obtido de todos os sujeitos envolvidos. Antes de começar, todas as soluções e equipamentos devem ser preparados (secção 1) e os peixes devem ser cruzados (secção 2). 1. Prepa…

Representative Results

Este protocolo descreve a abordagem experimental para o estabelecimento de zPDXs a partir de adenocarcinoma pancreático humano primário. Uma amostra tumoral foi coletada, picada e corada com corante fluorescente, conforme descrito na seção 4 do protocolo. zPDXs foram então estabelecidos com sucesso pela implantação de um pedaço de tumor no espaço perivitelino de 2 embriões de peixe-zebra dpf, conforme descrito na seção 5 do protocolo. Conforme descrito na seção 6 do protocolo, os zPDXs foram rastreados para…

Discussion

Modelos in vivo na pesquisa do câncer fornecem ferramentas inestimáveis para entender a biologia do câncer e prever a resposta ao tratamento do câncer. Atualmente, diferentes modelos in vivo estão disponíveis, por exemplo, animais geneticamente modificados (camundongos transgênicos e knockout) ou xenoenxertos derivados de pacientes a partir de células primárias humanas. Apesar de muitas características ideais, cada um tem várias limitações. Em particular, os modelos acima mencionados carece…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Este trabalho foi financiado pela Fondazione Pisa (projeto 114/16). Os autores agradecem a Raffaele Gaeta, da Unidade de Histopatologia da Azienda Ospedaliera Pisana, pela seleção da amostra e apoio anatomopatológico. Agradecemos também a Alessia Galante pelo suporte técnico nos experimentos. Este artigo baseia-se no trabalho da COST Action TRANSPAN, CA21116, apoiado pela COST (Cooperação Europeia em Ciência e Tecnologia).

Materials

5-fluorouracil Teva Pharma AG SMP 1532755
48 multiwell plate Sarstedt 83 3923
96 multiwell plate Sarstedt 82.1581.001
Acetone Merck 179124
Agarose powder  Merck A9539
Amphotericin Thermo Fisher Scientific 15290018
Anti-Nuclei Antibody, clone 235-1 Merck MAB1281  1:200 dilution
Aquarium net QN6 Penn-plax 0-30172-23006-6
BSA Merck A9418
CellTrace Thermo Fisher Scientific C34567
CellTracker CM-DiI  Thermo Fisher Scientific C7001
CellTracker Deep Red  Thermo Fisher Scientific C34565
Cleaved Caspase-3 (Asp175) (5A1E) Rabbit mAb Cell Signaling Technology 9661S 1:250 dilution
Dimethyl sulfoxide (DMSO)  PanReac AppliChem ITW Reagents A3672,0250
Dumont #5 forceps World Precision Instruments 501985
Folinic acid -  Lederfolin Pfizer
Glass capillaries, 3.5" Drummond Scientific Company 3-000-203-G/X Outer diameter = 1.14 mm. Inner diameter = 0.53 mm. 
Glass vials  VWR International WHEAW224581
Goat anti-Rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 647 Thermo Fisher Scientific A-21244   1:500 dilution
Goat serum Thermo Fisher Scientific 31872
Hoechst 33342 Thermo Fisher Scientific H3570
Irinotecan Hospira
Low Temperature Freezer Vials VWR International 479-1220
McIlwain Tissue Chopper World Precision Instruments
Microplate Mixer SCILOGEX 822000049999
Oxaliplatin Teva
Paraformaldehyde Merck P6148-500G
PBS Thermo Fisher Scientific 14190094
Penicillin-streptomycin  Thermo Fisher Scientific 15140122
Petri dish 100 mm Sarstedt 83 3902500
Petri dish 60 mm Sarstedt 83 3901
Plastic Pasteur pipette Sarstedt 86.1171.010
Poly-Mount Tebu-bio 18606-5
Propidium iodide Merck P4170
RPMI-1640 medium Thermo Fisher Scientific 11875093
Scalpel blade No 10 Sterile Stainless Steel VWR International SWAN3001
Scalpel handle #3 World Precision Instruments 500236
Tricaine Merck E10521
Triton X-100  Merck T8787
Tween 20 Merck P9416
Vertical Micropipette Puller Shutter instrument P-30 

Riferimenti

  1. Rubin, H. Understanding cancer. Science. 219 (4589), 1170-1172 (1983).
  2. Krzyszczyk, P., et al. The growing role of precision and personalized medicine for cancer treatment. Technology. 6 (3-4), 79-100 (2018).
  3. Siegel, R. L., Miller, K. D., Fuchs, H. E., Jemal, A. Cancer statistics, 2022. CA Cancer Journal for Clinicians. 72 (1), 7-33 (2022).
  4. Trunk, A., et al. Emerging treatment strategies in pancreatic cancer. Pancreas. 50 (6), 773-787 (2021).
  5. Moffat, G. T., Epstein, A. S., O’Reilly, E. M. Pancreatic cancer-A disease in need: Optimizing and integrating supportive care. Cancer. 125 (22), 3927-3935 (2019).
  6. Sarantis, P., Koustas, E., Papadimitropoulou, A., Papavassiliou, A. G., Karamouzis, M. V. Pancreatic ductal adenocarcinoma: Treatment hurdles, tumor microenvironment and immunotherapy. World Journal of Gastrointestinal Oncology. 12 (2), 173-181 (2020).
  7. Marshall, L. J., Triunfol, M., Seidle, T. Patient-derived xenograft vs. organoids: a preliminary analysis of cancer research output, funding and human health impact in 2014-2019. Animals. 10 (10), 1923 (2020).
  8. Li, Y., Tang, P., Cai, S., Peng, J., Hua, G. Organoid based personalized medicine: from bench to bedside. Cell Regeneration. 9 (1), 21 (2020).
  9. Jung, J., Seol, H. S., Chang, S. The generation and application of patient-derived xenograft model for cancer research. Cancer Research and Treatment. 50 (1), 1-10 (2018).
  10. Rizzo, G., Bertotti, A., Leto, S. M., Vetrano, S. Patient-derived tumor models: a more suitable tool for pre-clinical studies in colorectal cancer. Journal of Experimental & Clinical Cancer Research. 40 (1), 178 (2021).
  11. Usai, A., et al. Zebrafish patient-derived xenografts identify chemo-response in pancreatic ductal adenocarcinoma patients. Cancers. 13 (16), 4131 (2021).
  12. Usai, A., et al. A model of a zebrafish avatar for co-clinical trials. Cancers. 12 (3), 677 (2020).
  13. Chen, X., Li, Y., Yao, T., Jia, R. Benefits of zebrafish xenograft models in cancer research. Frontiers in Cell and Developmental Biology. 9, 616551 (2021).
  14. Miserocchi, G., et al. Management and potentialities of primary cancer cultures in preclinical and translational studies. Journal of Translational Medicine. 15 (1), 229 (2017).
  15. Baghban, R., et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Communication and Signaling. 18 (1), 59 (2020).
  16. Albini, A., et al. Cancer stem cells and the tumor microenvironment: interplay in tumor heterogeneity. Connective Tissue Research. 56 (5), 414-425 (2015).
  17. Avdesh, A., et al. Regular care and maintenance of a zebrafish (Danio rerio) laboratory: an introduction. Journal of Visualized Experiments. (69), e4196 (2012).
  18. Quail, D. F., Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nature Medicine. 19 (11), 1423-1437 (2013).
  19. Tavares Barroso, M., et al. Establishment of pancreatobiliary cancer zebrafish avatars for chemotherapy screening. Cells. 10 (8), 2077 (2021).
  20. Kopetz, S., Lemos, R., Powis, G. The promise of patient-derived xenografts: the best laid plans of mice and men. Clinical Cancer Research. 18 (19), 5160-5162 (2012).
  21. Xing, F., Saidou, J., Watabe, K. Cancer associated fibroblasts (CAFs) in tumor microenvironment. Frontiers in Bioscience. 15 (1), 166-179 (2010).
  22. Strähle, U., et al. Zebrafish embryos as an alternative to animal experiments-a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reproductive Toxicology. 33 (2), 128-132 (2012).
  23. Hidalgo, M., et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discovery. 4 (9), 998-1013 (2014).
check_url/it/63744?article_type=t

Play Video

Citazione di questo articolo
Usai, A., Di Franco, G., Gabellini, C., Morelli, L., Raffa, V. Establishment of Zebrafish Patient-Derived Xenografts from Pancreatic Cancer for Chemosensitivity Testing. J. Vis. Exp. (195), e63744, doi:10.3791/63744 (2023).

View Video