Summary

肺动脉高压大鼠模型中右心室功能的综合超声心动图评估

Published: January 20, 2023
doi:

Summary

本协议描述了肺动脉高压大鼠模型中右心室形态和功能的超声心动图特征。

Abstract

肺动脉高压(PAH)是一种由肺部小动脉血管收缩和重塑引起的进行性疾病。这种重塑导致肺血管阻力增加、右心室功能恶化和过早死亡。目前批准的PAH疗法主要针对肺血管扩张剂途径;然而,最近新兴的治疗方式集中在涉及疾病发病机制的其他新途径上,包括右心室(RV)重塑。允许对新疗法进行纵向评估的成像技术对于确定新药在临床前研究中的疗效非常有用。无创经胸超声心动图仍然是评估心脏功能的标准方法,并广泛用于啮齿动物模型。然而,由于其解剖位置和结构,右心室的超声心动图评估可能具有挑战性。此外,临床前啮齿动物模型中缺乏超声心动图的标准化指南,因此难以在不同实验室的研究中对RV功能进行统一的评估。在临床前研究中,大鼠久效(MCT)损伤模型被广泛用于评估治疗PAH的药物疗效。该协议描述了幼稚和MCT诱导的PAH大鼠中RV的超声心动图评估。

Introduction

PAH 是一种进行性疾病,定义为静息时的平均肺动脉压大于 20 mmHg1。PAH 的病理改变包括肺动脉 (PA) 重塑、血管收缩、炎症以及成纤维细胞活化和增殖。这些病理变化导致肺血管阻力增加,从而导致右心室重塑、肥大和衰竭2。PAH是一种复杂的疾病,涉及几种信号通路之间的串扰。目前批准的治疗PAH的药物主要针对血管扩张剂途径,包括一氧化氮-环鸟苷单磷酸途径、前列环素途径和内皮素途径。针对这些途径的疗法已被用作单一疗法和联合疗法34。尽管在过去十年中PAH的治疗取得了进展,但美国REVEAL 登记处的调查结果显示,新诊断患者的 5 年生存率很低5.最近,新兴的治疗方式集中在疾病修饰剂上,这些药物可以影响PAH中发生的血管重塑的多因素病理生理学,以期破坏疾病6

PAH的动物模型是评估新药物治疗效果的宝贵工具。MCT诱导的PAH大鼠模型是一种广泛使用的动物模型,其特征是肺动脉血管重塑,这反过来又导致肺血管阻力增加和右心室肥厚和功能障碍78。为了评估新疗法的疗效,研究人员通常专注于右心室压力的终末评估,而不考虑PA压力,右心室形态和右心室功能的纵向评估。使用无创和非终末成像技术对于全面检查动物模型中的疾病进展至关重要。经胸超声心动图仍然是评估动物模型中心脏形态和功能的标准方法,因为与其他成像方式(如磁共振成像)相比,经胸超声心动图成本低且易于使用。然而,由于右心室位于胸骨阴影下方、其发达的小梁和解剖形状,因此对右心室的超声心动图评估可能具有挑战性,所有这些都使得难以描绘心内膜边界91011

本文旨在描述一种综合方案,以评估 Sprague Dawley (SD) 大鼠幼稚和 MCT 诱导的 PAH 的右心室尺寸、面积和体积以及收缩和舒张功能。此外,该协议详细介绍了一种评估正常和扩张右心房超声心动图尺寸的方法。

Protocol

该协议中的所有实验均按照伊利诺伊大学芝加哥分校芝加哥机构动物护理和使用委员会的动物护理指南进行。雄性斯普拉格道利(SD)大鼠在注射MCT时体重在0.200-0.240公斤之间;但是,本文中描述的方案可用于更广泛的体重范围。这些动物是从商业来源获得的(见 材料表)。 1. 研究设计 动物获得雄性SD大鼠并让它们适应4-7天。实验组将大?…

Representative Results

在这项研究中,MCT处理的大鼠被用作PAH的模型。超声心动图分析在MCT给药后的研究第23天进行,所有测量和计算均代表连续三个周期的平均值。从对照(载体:去离子水)和MCT处理的大鼠(60mg / kg)获得的超声心动图参数如 表1所示。 对照和MCT处理的大鼠的PLAX视图的代表性图像如图 1A所示。这些图像用作心脏位置和左心室形态的初步评估。R…

Discussion

RV的超声心动图评估是筛选PAH动物模型中新疗法有效性的宝贵发现工具。深入表征RV结构和功能是必要的,作为治疗PAH地址RV重塑的新靶点414。本研究描述了一个详细的协议,可以成功表征RV的结构和功能。

复杂的结构几何形状和胸骨后面的位置使得右心室的超声心动图表征变得困难;因此,改进的超声心动图视图用于促进右心室可…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了NHLBI K01 HL155241和AHA CDA849387的支持,授予作者P.C.R.。

Materials

0.9% sodium cloride injection USP Baxter 2B1324
Braided cotton rolls 4MD Medical Solutions RIHD201205
Depilating agent Wallgreens Nair Hair Remover 
Electrode gel Parker Laboratories  15-60
High frequency ultrasound image system and imaging station FUJIFILM VisualSonics, Inc. Vevo 2100
Isoflurane MedVet RXISO-250
Male sprague Dawley rats Charles River Laboratories CD 001 CD IGS Rats (Crl:CD(SD))
Monocrotaline (MCT) Sigma-Aldrich C2401
Rectal temperature probe   Physitemp  RET-3
Sealed induction chambers Scivena Scientific RES644  3 L size
Solid-state array ultrasound transducer FUJIFILM VisualSonics, Inc. Vevo MicroScan transducer MS250S
Stainless steel digital calipers VWR Digital Calipers 62379-531
Ultrasound gel  Parker Laboratories  11-08
Vevo Lab software FUJIFILM VisualSonics, Inc. Verison 5.5.1

Riferimenti

  1. Galie, N., McLaughlin, V. V., Rubin, L. J., Simonneau, G. An overview of the 6th World Symposium on Pulmonary Hypertension. European Respiratory Journal. 53 (1), 1802148 (2019).
  2. Tyagi, S., Batra, V. Novel therapeutic approaches of pulmonary arterial hypertension. International Journal of Angiology. 28 (2), 112-117 (2019).
  3. Hoeper, M. M., et al. Targeted therapy of pulmonary arterial hypertension: Updated recommendations from the Cologne Consensus Conference 2018. International Journal of Cardiology. 272, 37-45 (2018).
  4. Sommer, N., et al. Current and future treatments of pulmonary arterial hypertension. British Journal of Pharmacology. 178 (1), 6-30 (2021).
  5. Farber, H. W., et al. Five-year outcomes of patients enrolled in the REVEAL registry. Chest. 148 (4), 1043-1054 (2015).
  6. Zolty, R. Novel experimental therapies for treatment of pulmonary arterial hypertension. Journal of Experimental Pharmacology. 13, 817-857 (2021).
  7. Jasmin, J. F., Lucas, M., Cernacek, P., Dupuis, J. Effectiveness of a nonselective ET(A/B) and a selective ET(A) antagonist in rats with monocrotaline-induced pulmonary hypertension. Circulation. 103 (2), 314-318 (2001).
  8. Stenmark, K. R., Meyrick, B., Galie, N., Mooi, W. J., McMurtry, I. F. Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure. American Journal of Physiology Lung Cellular and Molecular Physiology. 297 (6), 1013-1032 (2009).
  9. Muresian, H. The clinical anatomy of the right ventricle. Clinical Anatomy. 29 (3), 380-398 (2016).
  10. Rudski, L. G., et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. Journal of the American Society of Echocardiography. 23 (7), 685-713 (2010).
  11. Jones, N., Burns, A. T., Prior, D. L. Echocardiographic assessment of the right ventricle-state of the art. Heart Lung and Circulation. 28 (9), 1339-1350 (2019).
  12. Spyropoulos, F., et al. Echocardiographic markers of pulmonary hemodynamics and right ventricular hypertrophy in rat models of pulmonary hypertension. Pulmonary Circulation. 10 (2), 2045894020910976 (2020).
  13. Armstrong, W. F., Ryan, T., Feigenbaum, H. . Feigenbaum’s echocardiography. 7th edn. , (2010).
  14. Kimura, K., et al. Evaluation of right ventricle by speckle tracking and conventional echocardiography in rats with right ventricular heart failure. International Heart Journal. 56 (3), 349-353 (2015).
  15. Cheng, H. W., et al. Assessment of right ventricular structure and function in mouse model of pulmonary artery constriction by transthoracic echocardiography. Journal of Visualized Experiments. 84, e51041 (2014).
  16. Mazurek, J. A., Vaidya, A., Mathai, S. C., Roberts, J. D., Forfia, P. R. Follow-up tricuspid annular plane systolic excursion predicts survival in pulmonary arterial hypertension. Pulmonary Circulation. 7 (2), 361-371 (2017).
  17. Grapsa, J., et al. Echocardiographic and hemodynamic predictors of survival in precapillary pulmonary hypertension: seven-year follow-up. Circulation: Cardiovascular Imaging. 8 (6), 002107 (2015).
  18. Bernardo, I., Wong, J., Wlodek, M. E., Vlahos, R., Soeding, P. Evaluation of right heart function in a rat model using modified echocardiographic views. PLoS One. 12 (10), 0187345 (2017).
check_url/it/63775?article_type=t

Play Video

Citazione di questo articolo
Rosas, P. C., Neves, L. A. A., Senese, P. B., Gralinski, M. R. Comprehensive Echocardiographic Assessment of Right Ventricle Function in a Rat Model of Pulmonary Arterial Hypertension. J. Vis. Exp. (191), e63775, doi:10.3791/63775 (2023).

View Video