Summary

Microfluidic Device for the Separation of Non-Metastatic (MCF-7) and Non-Tumor (MCF-10A) Breast Cancer Cells Using AC Dielectrophoresis

Published: August 11, 2022
doi:

Summary

Breast cancer cells exhibit different dielectric properties compared to non-tumor breast epithelial cells. It has been hypothesized that, based on this difference in dielectric properties, the two populations can be separated for immunotherapy purposes. To support this, we model a microfluidic device to sort MCF-7 and MCF-10A cells.

Abstract

Dielectrophoretic devices are capable of the detection and manipulation of cancer cells in a label-free, cost-effective, robust, and accurate manner using the principle of the polarization of the cancer cells in the sample volume by applying an external electric field. This article demonstrates how a microfluidic platform can be utilized for high-throughput continuous sorting of non-metastatic breast cancer cells (MCF-7) and non-tumor breast epithelial cells (MCF-10A) using hydrodynamic dielectrophoresis (HDEP) from the cell mixture. By generating an electric field between two electrodes placed side-by-side with a micron-sized gap between them in an HDEP microfluidic chip, non-tumor breast epithelial cells (MCF-10A) can be pushed away, exhibiting negative DEP inside the main channel, while the non-metastatic breast cancer cells follow their course unaffected when suspended in cell medium due to having conductivity higher than the membrane conductivity. To demonstrate this concept, simulations were performed for different values of medium conductivity, and the sorting of cells was studied. A parametric study was carried out, and a suitable cell mixture conductivity was found to be 0.4 S/m. By keeping the medium conductivity fixed, an adequate AC frequency of 0.8 MHz was established, giving maximum sorting efficiency, by varying the electric field frequency. Using the demonstrated method, after choosing the appropriate cell mixture suspension medium conductivity and frequency of the applied AC, maximum sorting efficiency can be achieved.

Introduction

A malignant tumor that develops in and around the breast tissue is a frequent cause of breast cancer in women worldwide, causing a critical health problem1. Breast tumors before metastasis can be treated through surgery if detected at an early stage, but if ignored, they can have severe implications on the patient's life by spreading to their lungs, brain, and bones. The treatments offered at later stages, such as radiation and chemical-based therapies, have severe side effects2. Recent studies have reported that an early diagnosis of breast cancer reduces the mortality rate by 60%3. Hence, it is imperative to work toward personalized early detection methods. To this end, researchers working in different fields of science and technology have used microfluidics to develop devices for the early diagnosis of breast cancer4. These methods include cell affinity micro-chromatography, magnetic-activated micro-cell sorters, size-based cancer cell capture and separation, and on-chip dielectrophoresis (DEP)5,6. These microfluidic techniques reported in the literature enable precise cell manipulation, real-time monitoring, and sorting of well-defined samples, which serve as an intermediate step in many diagnostic and therapeutic applications5. The integration of these sorting mechanisms with microfluidics offers flexible and reliable manipulation of the target cells7,8,9,10. One of the main advantages of such an integration is the ability to work with fluid samples in nano to microliter volumes and also being able to manipulate the electrical properties of the sample fluid. By adjusting the conductivity of the suspending fluid inside microfluidic devices, the biological cells can be sorted based on their sizes and differences in their dielectric properties11,12.

Among these techniques, on-chip DEP is often preferred as it is a label-free cell sorting technique that exploits the electric properties of the biological samples. DEP has been reported to manipulate bio-samples such as DNA13, RNA14, proteins15, bacteria16, blood cells17, circulating tumor cells (CTCs)18, and stem cells19. Microfluidic devices that employ DEP for sorting biological samples have been reported extensively in literature20. Reservoir-based DEP microfluidic (rDEP) devices for sorting viable and non-viable yeast cells have been reported that protect the cells from the adverse effects of electrochemical reactions21,22. Piacentini et al. reported a castellated microfluidic cell sorter that separated red blood cells from platelets with an efficiency of 97%23. On-chip DEP devices with asymmetric orifices and embedded electrodes have also been reported to sort viable and non-viable cells24. Valero and Demierre et al. modified the castellated microfluidic cell sorter by introducing two arrays of microelectrodes on both sides of the channel25,26. This helped in focusing the cells in the center of the channel. Zeynep et al. presented a DEP-based microfluidic device to separate and concentrate MCF7 breast cancer cells from leukocytes27. They reported an efficiency of extracting MCF7 cells from leukocytes between 74%-98% with a frequency of 1 MHz and an applied voltage ranging from 10-12 Vpp. Supplementary Table 1 represents a qualitative and quantitative comparison between the DEP-based microfluidic sorting devices based on their design, electrode configuration, and operating parameters (applied frequency and voltage).

More recently, researchers have tried to measure the differences in the dielectric behavior of breast epithelial cells (MCF-10A) and non-metastatic breast cancer cells (MCF-7) inside a microfluidic chip28,29. Jithin et al. also characterized the dielectric responses of different cancer cell lines using an open-ended coaxial probe technique with frequencies between 200 MHz and 13.6 GHz30. These differences in the dielectric responses of MCF-7 and MCF-10A cell lines can be exploited to separate them in runtime and can lead to the development of personalized early-stage diagnosis devices.

In this article, we simulate the controlled sorting of non-metastatic breast cancer cells (MCF-7) and non-tumor breast epithelial cells (MCF-10A) using AC dielectrophoresis. The region of change in the electric field influences the sorting inside the microfluidic chip. The proposed technique is easy to implement and allows for the integration of the sorting technique into various microfluidic chip layouts. Computational fluid dynamics (CFD) simulations were carried out to study the separation of non-metastatic breast cancer cells and non-tumor breast epithelial cells by varying the conductivity of the fluid medium in which cells were suspended. In these simulations, it is shown that, by keeping the conductivity constant and by changing the applied frequency, the separation of cancer cells and healthy cells can be controlled.

Protocol

NOTE: The protocol here uses COMSOL, a multiphysics simulation software, to simulate the controlled sorting of non-metastatic breast cancer cells (MCF-7) and non-tumor breast epithelial cells (MCF-10A) using AC dielectrophoresis. 1. Chip design and parameter selection Open multiphysics software and select Blank Model. Right-click on the Global Definitions and select Parameters. Import the parameters given in <stron…

Representative Results

Investigating the optimal operational parameters for effective DEP-based sorting of non-metastatic breast cancer (MCF-7) and non-tumor breast epithelial (MCF-10A) cells To achieve a successful separation of non-metastatic breast cancer (MCF-7) and non-tumor breast epithelial (MCF-10A) cells with divergent dielectric properties when undergoing dielectrophoresis, their K factors should be distinct by keeping the applied frequency fixed37,38. …

Discussion

Microfluidic devices have been reported previously for cell culture, trapping, and sorting47,52,53. The fabrication of these devices in the cleanroom is an expensive process, and it is imperative to quantify the output and efficiency of a proposed microfluidic device through CFD simulations. This study presents the design and simulations of an AC-dielectrophoretic microfluidic device for the continuous separation of non-metastat…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This study was supported by the Higher Education Commission of Pakistan.

Materials

COMSOL COMSOL multiphysics simulation software

Riferimenti

  1. Liang, L., et al. Microfluidic-based cancer cell separation using active and passive mechanisms. Microfluidics and Nanofluidics. 24 (4), 26 (2020).
  2. Damiati, S., Kompella, U. B., Damiati, S. A., Kodzius, R. Microfluidic devices for drug delivery systems and drug screening. Genes. 9 (2), 103 (2018).
  3. Pashayan, N., et al. Personalized early detection and prevention of breast cancer: ENVISION consensus statement. Nature Reviews Clinical Oncology. 17 (11), 687-705 (2020).
  4. Panesar, S., Neethirajan, S. Microfluidics: Rapid diagnosis for breast cancer. Nano-micro Letters. 8 (3), 204-220 (2016).
  5. Chen, J., Li, J., Sun, Y. Microfluidic approaches for cancer cell detection, characterization and separation. Lab on a Chip. 12 (10), 1753-1767 (2012).
  6. Beech, J. P., Holm, S. H., Adolfsson, K., Tegenfeldt, J. O. Sorting cells by size, shape and deformability. Lab on a Chip. 12 (6), 1048-1051 (2012).
  7. Kang, Y., Li, D. Electrokinetic motion of particles and cells in microchannels. Microfluidics and Nanofluidics. 6 (4), 431-460 (2009).
  8. Schmid, L., Weitz, D. A., Franke, T. Acoustic microfluidic fluorescence-activated cell sorter. Lab on a Chip. 14 (19), 3710-3718 (2014).
  9. Yu, B. Y., Elbuken, C., Shen, C., Huissoon, J. P., Ren, C. L. An integrated microfluidic device for the sorting of yeast cells using image processing. Scientific Reports. 8, 3550 (2014).
  10. Asiaei, S., Darvishi, V., Davari, M. H., Zohrevandi, D., Moghadasi, H. Thermophoretic isolation of circulating tumor cells, numerical simulation and design of a microfluidic chip. Journal of Thermal Analysis and Calorimetry. 137 (3), 831-839 (2019).
  11. Song, Y., Li, M., Pan, X., Wang, Q., Li, D. Size-based cell sorting with a resistive pulse sensor and an electromagnetic pump in a microfluidic chip. Electrophoresis. 36 (3), 398-404 (2014).
  12. Giraud, G., et al. Dielectrophoretic manipulation of ribosomal RNA. Biomicrofluidics. 5 (2), 024116 (2011).
  13. Valero, A., Braschler, T., Demierre, N., Renaud, P. A miniaturized continuous dielectrophoretic cell sorter and its applications. Biomicrofluidics. 4 (2), 022807 (2010).
  14. Allahrabbi, N., Chia, Y. S. M., Saifullah, M. S. M., Lim, K. M., Lanry Yung, L. Y. A hybrid dielectrophoretic system for trapping of microorganisms from water. Biomicrofluidics. 9 (3), 034110 (2015).
  15. Vykoukal, D. M., Gascoyne, P. R. C., Vykoukal, J. Dielectric characterization of complete mononuclear and polymorphonuclear blood cell subpopulations for label-free discrimination. Integrative Biology: Quantitative Biosciences from Nano to Macro. 1 (7), 477-484 (2009).
  16. Shim, S., et al. Antibody-independent isolation of circulating tumor cells by continuous-flow dielectrophoresis. Biomicrofluidics. 7 (1), 11807 (2013).
  17. Jeon, H. J., Lee, H., Yoon, D. S., Kim, B. M. Dielectrophoretic force measurement of red blood cells exposed to oxidative stress using optical tweezers and a microfluidic chip. Biomedical Engineering Letters. 7 (4), 317-323 (2017).
  18. Song, H., et al. Continuous-flow sorting of stem cells and differentiation products based on dielectrophoresis. Lab on a Chip. 15 (5), 1320-1328 (2015).
  19. Tsai, S. L., Chiang, Y., Wang, M. H., Chen, M. K., Jang, L. S. Battery-powered portable instrument system for single-cell trapping, impedance measurements, and modeling analyses. Electrophoresis. 35 (16), 2392-2400 (2014).
  20. Chan, J. Y., et al. Dielectrophoresis-based microfluidic platforms for cancer diagnostics. Biomicrofluidics. 12 (1), 011503 (2018).
  21. Patel, S., et al. Microfluidic separation of live and dead yeast cells using reservoir-based dielectrophoresis. Biomicrofluidics. 6 (3), 34102 (2012).
  22. Yildizhan, Y., Erdem, N., Islam, M., Martinez-Duarte, R., Elitas, M. Dielectrophoretic separation of live and dead monocytes using 3D carbon-electrodes. Sensors. 17 (11), 2691-2704 (2017).
  23. Piacentini, N., Mernier, G., Tornay, R., Renaud, P. Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation. Biomicrofluidics. 5 (3), 34122 (2011).
  24. Zhao, K., Duncker, B. P., Li, D. Continuous cell characterization and separation by microfluidic alternating current dielectrophoresis. Analytical Chemistry. 91 (9), 6304-6314 (2019).
  25. Valero, A., et al. Tracking and synchronization of the yeast cell cycle using dielectrophoretic opacity. Lab on a Chip. 11 (10), 1754-1760 (2011).
  26. Demierre, N., Braschler, T., Muller, R., Renaud, P. Focusing and continuous separation Of cells in a microfluidic device using lateral dielectrophoresis. International Solid-State Sensors, Actuators and Microsystems Conference. 430 (98), 1777-1780 (2007).
  27. Arslan, Z. C., Yalçın, Y. D., Külah, H. Label-free enrichment of MCF7 breast cancer cells from leukocytes using continuous flow dielectrophoresis. Electrophoresis. 43 (13-14), 1531-1544 (2022).
  28. Turcan, I., Olariu, M. A. Dielectrophoretic manipulation of cancer cells and their electrical characterization. ACS Combinatorial Science. 22 (11), 554-578 (2020).
  29. Park, J., et al. Sequential cell-processing system by integrating hydrodynamic purification and dielectrophoretic trapping for analyses of suspended cancer cells. Micromachines. 11 (1), 47 (2020).
  30. Hussein, M., et al. Breast cancer cells exhibits specific dielectric signature in vitro using the open-ended coaxial probe technique from 200 MHz to 13.6 GHz. Scientific Reports. 9, 4681 (2019).
  31. Fornes-Leal, A., Garcia-Pardo, C., Frasson, M., Pons Beltrán, V., Cardona, N. Dielectric characterization of healthy and malignant colon tissues in the 0.5-18 GHz frequency band. Physics in Medicine and Biology. 61 (20), 7334-7346 (2016).
  32. Çetin, B., Li, D. Dielectrophoresis in microfluidics technology. Electrophoresis. 32 (18), 2410-2427 (2011).
  33. Khan, S., Khulief, Y. A., Al-Shuhail, A. A. Effects of reservoir size and boundary conditions on pore-pressure buildup and fault reactivation during CO2 injection in deep geological reservoirs. Environmental Earth Sciences. 79, 294 (2020).
  34. Adams, T. N. G., Turner, P. A., Janorkar, A. V., Zhao, F., Minerick, A. R. Characterizing the dielectric properties of human mesenchymal stem cellsand the effects of charged elastin-like polypeptide copolymer treatment. Biomicrofluidics. 8 (5), 054109 (2014).
  35. Lo, Y. J., et al. Measurement of the Clausius-Mossotti factor of generalized dielectrophoresis. Applied Physics Letters. 104, 083701 (2014).
  36. Lo, Y. J., Lei, U. Measurement of the real part of the Clausius-Mossotti factor of dielectrophoresis for Brownian particles. Electrophoresis. 41 (1), 137-147 (2020).
  37. Ohta, A. T., et al. Optically controlled cell discrimination and trapping using optoelectronic Tweezers. IEEE Journal of Selected Topics in Quantum Electronics. 13 (2), 235-242 (2007).
  38. Sun, T., Morgan, H. Single-cell microfluidic Impedance cytometry. Microfluidics and Nanofluidics. 8 (4), 423-443 (2010).
  39. Weng, P. Y., et al. Size-dependent dielectrophoretic cross-over frequency of spherical particles. Biomicrofluidics. 10 (1), 1909-1921 (2016).
  40. Lu, Y. W., Sun, C., Kao, Y. C., Hung, C. L., Juang, J. Y. Dielectrophoretic cross-over frequency of single particles: Quantifying the effect of surface functional groups and electrohydrodynamic flow drag force. Nanomaterials. 10 (7), 1364 (2020).
  41. Henslee, E. A., Sano, M. B., Rojas, A. D., Schmelz, E. M., Davalos, R. V. Selective concentration of human cancer cells using contactless dielectrophoresis. Electrophoresis. 32 (18), 2523-2529 (2011).
  42. Chan, J. Y., et al. Dielectrophoresis-based microfluidic platforms for cancer diagnostics. Biomicrofluidics. 12 (1), 11503-11525 (2018).
  43. Gascoyne, P. R. C., Shim, S. Isolation of circulating tumor cells by dielectrophoresis. Cancers. 6 (1), 545-579 (2014).
  44. Liang, W., et al. Determination of dielectric properties of cells using ac electrokinetic-based microfluidic platform. Micromachines. 11 (5), 513-537 (2020).
  45. Frusawa, H., et al. Frequency-modulated wave dielectrophoresis of vesicles and cells periodic U-turns at the crossover frequency. Nanoscale Research Letters. 13 (169), 2583-2589 (2018).
  46. Wei, M. T., Junio, J., Ou-Yang, D. H. Direct measurements of the frequency-dependent dielectrophoresis force. Biomicrofluidics. 3 (1), 12003 (2009).
  47. Mustafa, A., Pedone, E., Marucci, L., Moschou, D., Lorenzo, M. D. A flow-through microfluidic chip for continuous dielectrophoretic separation of viable and non-viable human T-cells. Electrophoresis. 43 (3), 501-508 (2021).
  48. Wang, L., et al. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Electrophoresis. 30 (5), 782-791 (2021).
  49. Alazzam, A., Mathew, B., Alhammadi, F. Novel microfluidic device for the continuous separation of cancer cells using dielectrophoresis. Journal of Separation Science. 40 (5), 1193-1200 (2017).
  50. Yang, L., Banada, P. P., Bhunia, A. K., Bashir, R. Effects of dielectrophoresis on growth viability and immuno-reactivity of listeria monocytogenes. Journal of Biological Engineering. 2, 6 (2008).
  51. Matbaechi, H., Soltani, P., Hölzel, R., Wenger, C. Dielectrophoretic immobilization of yeast cells using CMOS integrated microfluidics. Micromachines. 11 (5), 501-518 (2020).
  52. Mustafa, A., Pedone, E., La Regina, A., Erten, A. A., Marucci, L. Development of a single layer microfluidic device for dynamic stimulation, culture and imaging of mammalian cells. bioRxiv. , (2022).
  53. Mustafa, A., et al. Enhanced dissolution of liquid microdroplets in the extensional creeping flow of a hydrodynamic trap. Langmuir. 32 (37), 9460-9467 (2016).
  54. Chang, H. F., Chou, S. E., Cheng, J. Y. Electric-field-induced neural precursor cell differentiation in microfluidic devices. Journal of Visualized Experiments. (170), e61917 (2021).

Play Video

Citazione di questo articolo
ur Rehman, A., Zabibah, R. S., Kharratian, S., Mustafa, A. Microfluidic Device for the Separation of Non-Metastatic (MCF-7) and Non-Tumor (MCF-10A) Breast Cancer Cells Using AC Dielectrophoresis. J. Vis. Exp. (186), e63850, doi:10.3791/63850 (2022).

View Video