Summary

用于组织工程应用的尺寸控制和无乳化壳聚糖 -染料木酚微凝胶的制备

Published: April 13, 2022
doi:

Summary

本方案描述了一种基于非乳液的壳聚糖-杰尼平微凝胶的制造方法。这些微凝胶的大小可以精确控制,它们可以显示pH依赖性肿胀, 在体内降解,并加载治疗分子,这些分子会随着时间的推移而持续释放,使其与组织工程应用高度相关。

Abstract

壳聚糖微凝胶因其应用广泛,成本低廉和免疫原性而在组织工程中引起了人们的极大兴趣。然而,壳聚糖微凝胶通常使用需要有机溶剂冲洗的乳液方法制造,这些方法有毒且对环境有害。本方案提出了一种快速,无细胞毒性,非乳液的方法,用于制造壳聚糖 – 京尼平微凝胶,而无需有机溶剂冲洗。这里描述的微凝胶可以通过精确的尺寸控制来制造。它们表现出生物分子的持续释放,使其与组织工程,生物材料和再生医学高度相关。壳聚糖与京尼平交联形成水凝胶网络,然后通过注射器过滤器产生微凝胶。微凝胶可以被过滤以产生一系列尺寸,并且它们显示出pH依赖性肿胀并随着时间的推移而酶降解。这些微凝胶已被用于大鼠生长板损伤模型,并被证明可以促进软骨组织修复增加, 并在体内28天显示完全降解。由于其低成本,高便利性和易于用细胞相容性材料制造,这些壳聚糖微胶囊在组织工程中呈现出令人兴奋和独特的技术。

Introduction

生长板,也称为骨架,是位于长骨末端的软骨结构,介导儿童的生长。如果生长板受伤,可以形成称为“骨棒”的修复组织,这会中断正常生长并可能导致生长缺陷或角畸形。流行病学数据显示,所有儿童骨骼损伤中有15%-30%与生长板有关。骨条形成发生在高达30%的这些损伤中,使得生长板损伤及其相关治疗成为一个重要的临床表现问题1234。当发生骨棒形成时,最常见的治疗途径包括切除骨棒并插入介位材料,例如硅或脂肪组织5。然而,接受骨筋切除手术的患者通常对完全康复的预后较差,因为目前没有治疗方法可以完全修复受损的生长板678。鉴于这些缺点,迫切需要有效的策略来治疗生长板损伤,无论是在防止骨棒的形成还是再生健康的骨骼软骨组织方面。

水凝胶微粒或微凝胶最近作为可注射支架引起了人们的兴趣,可以提供持续释放的治疗药物9。由于其高可调谐性和生物相容性,微凝胶也非常适合生物活性因子或细胞包封。微凝胶可以由各种材料制成,从合成聚合物(如聚乙二醇(PEG))到天然聚合物,如海藻酸盐或壳聚糖101112。壳聚糖已被证明对组织工程具有几种有益作用,例如其破坏革兰氏阴性菌外膜稳定性的能力,从而提供固有的抗菌活性1314。此外,壳聚糖具有成本效益,细胞相互作用,并且易于使用其含胺结构进行修饰。基于壳聚糖的微凝胶有望为药物递送和材料信号传导提供一种生物材料策略,可以促进组织再生,同时防止细菌感染。然而,壳聚糖微凝胶通常使用各种技术制造,需要特殊设备,乳液技术或细胞毒性溶剂冲洗。例如,一些研究已经用基于乳液的方法制造了壳聚糖微凝胶,但这些方案需要溶剂冲洗和细胞毒联剂,这可能会否定它们对临床环境的转化1516。其他研究已经使用微流体或电喷雾方法来制造壳聚糖微凝胶,这需要特殊的设备,制备和培训1718。壳聚糖微凝胶通常也通过交联剂滴加成壳聚糖溶液的过程制成;然而,该方法高度依赖于溶液粘度、聚合物浓度和流速,使得难以控制微凝胶1920的大小和分散度。相反,本文中描述的微凝胶制造方法不需要专门的设备或溶剂冲洗,使得这些微凝胶几乎可以在任何实验室或环境中进行制造。因此,这些微凝胶代表了高度相关的生物材料,可为许多应用提供快速,经济高效且易于生产的药物输送载体。

通过调节微凝胶的组成和材料特性,研究人员可以精确控制细胞微环境,从而以材料依赖性的方式指导细胞行为。微凝胶可以单独使用或与本体生物材料系统结合使用,以赋予特定的功能,例如生物活性因子的延长释放或天然或外源性细胞的精确特殊信号传导。生物材料和微凝胶已成为生长板损伤的有吸引力的治疗途径。已经投入了大量精力来开发基于海藻酸盐和壳聚糖的生物材料,以治疗生长板损伤2122232425。由于生长板骨化和骨伸长的动态时间性质,骨条形成的机制尚不完全清楚。因此,已经开发了几种动物模型来更好地阐明软骨内骨化和骨条形成的机制,例如在大鼠,兔子和绵羊中262728。一个这样的模型是大鼠生长板损伤模型,其利用大鼠胫骨中的钻孔缺陷以可预测和可重复的方式产生骨条,并在生长板2930的所有三个区域模拟人类损伤。已经使用该模型测试了几种基于生物材料的治疗生长板损伤的策略。此外,已经开发了两种不同的制备壳聚糖微凝胶的方法,其可用作可注射的生物材料系统,其以持续的方式释放治疗药物1031。这些微凝胶已被用于大鼠生理损伤模型,并且在释放SDF-1a和TGF-b3时显示软骨再生31 有所改善。该协议中提供的技术描述了为制造这些壳聚糖微凝胶而开发的方法,然后可以将其用于各种组织工程应用。例如,最近的研究已经使用热或洋红色响应的壳聚糖微凝胶用于受控肿瘤药物递送应用3233

Protocol

所有动物程序均由科罗拉多大学丹佛机构动物护理和使用委员会批准。6周龄的雄性Sprague-Dawley大鼠用于本研究。大鼠生长板损伤模型是在先前发表的报告30之后创建的。 1. 壳聚糖聚合物的制备 从市售来源获得纯化和冻干的低分子量(LMW)壳聚糖(参见 材料表)。 向1升烧杯中加入495 mL双蒸馏水(ddH2O)和搅拌?…

Representative Results

壳聚糖微凝胶的成功制造依赖于吉尼平和壳聚糖之间的交联反应,特别是涉及壳聚糖聚合物链上的胺。与其他微凝胶制造技术相比,该方法不需要乳液或溶剂冲洗,并且可以使用廉价的设备快速轻松地进行。成功制备微凝胶的一个标志性指标是在壳聚糖和吉尼平混合后从灰白色到深蓝色的明显颜色变化。京尼平与含胺化合物,如壳聚糖或其它蛋白质之间的交联反应,在文献34中?…

Discussion

近年来,微凝胶因其对各种用途的高度适用性(例如药物递送或细胞包封)而得到了广泛的研究 9.微尺度生物材料构建体的易于制造在组织工程中具有重要意义,因为它允许研究人员在特定尺寸和时间尺度上开发基于水凝胶的策略。然而,大多数制造壳聚糖微凝胶的方法需要昂贵的设备和试剂,乳液或细胞毒性溶剂冲洗,这阻止了它们转化为临床用途15,</s…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

本出版物中报告的研究得到了美国国立卫生研究院关节炎和肌肉骨骼和皮肤病研究所的支持,奖励号为R03AR068087和R21AR071585,并由Boettcher基金会(#11219)支持MDK。CBE由NIH / NCATS Colorado CTSA拨款号TL1 TR001081支持。

Materials

Acetic acid SigmaAldrich AX0073
BD Luer-Lock Syringe Fisher Scientific 14-823-16E
Büchner Funnel Fisher Scientific FB966F 100 mm diameter
Chitosan (low molecular weight) SigmaAldrich 448869 75-80% deacetylation
Dialysis Membrane Tubing Fisher Scientific 08-670-5C 3500 MWCO
Ethanol SigmaAldrich 493538
Genipin SigmaAldrich G4796
Heracell 150i Incubator ThermoFisher 50116047
Parafilm Fisher Scientific 13-374-12
Recombinant human SDF-1a Peprotech 300-28A
Recombinant human TGF-b3 Peprotech 100-36E
Whatman Filter Paper Grade 540 SigmaAldrich Z241547 8 mm pore size
Whatman Filter Paper Grade 541 SigmaAldrich WHA1541055 22 mm pore size
Whatman Filter paper Grade 542 SigmaAldrich WHA1542185 2.7 mm pore size
Wire Mesh Sieve McMaster-Carr 9317T86 No. 100 Mesh

Riferimenti

  1. Mizuta, T., Benson, W. M., Foster, B. K., Morris, L. L. Statistical analysis of the incidence of physeal injuries. Journal of Pediatric Orthopaedics. 7 (5), 518-523 (1987).
  2. Mann, D. C., Rajmaira, S. Distribution of physeal and nonphyseal fractures in 2,650 long-bone fractures in children aged 0-16 years. Journal of Pediatric Orthopaedics. 10 (6), 713-716 (1990).
  3. Eid, A. M., Hafez, M. A. Traumatic injuries of the distal femoral physis. Retrospective study on 151 cases. Injury. 33 (3), 251-255 (2002).
  4. Barmada, A., Gaynor, T., Mubarak, S. J. Premature physeal closure following distal tibia physeal fractures: a new radiographic predictor. Journal of Pediatric Orthopaedics. 23 (6), 733-739 (2003).
  5. Shaw, N., et al. Regenerative medicine approaches for the treatment of pediatric physeal injuries. Tissue Engineering Part B: Reviews. 24 (2), 85-97 (2018).
  6. Dabash, S., Prabhakar, G., Potter, E., Thabet, A. M., Abdelgawad, A., Heinrich, S. Management of growth arrest: current practice and future directions. Journal of Clinical Orthopaedics and Trauma. 9, 58-66 (2018).
  7. Williamson, R. V., Staheli, L. T. Partial physeal growth arrest: treatment by bridge resection and fat interposition. Journal of Pediatric Orthopedics. 10 (6), 769-776 (1990).
  8. Escott, B. G., Kelley, S. P. Management of traumatic physeal growth arrest. Orthopaedics and Trauma. 26 (3), 200-211 (2012).
  9. Newsom, J. P., Payne, K. A., Krebs, M. D. Microgels: modular, tunable constructs for tissue regeneration. Acta Biomaterialia. 88, 32-41 (2019).
  10. Riederer, M. S., Requist, B. D., Payne, K. A., Way, J. D., Krebs, M. D. Injectable and microporous scaffold of densely-packed, growth factor-encapsulating chitosan microgels. Carbohydrate Polymers. 152, 792-801 (2016).
  11. Xin, S., Wyman, O. M., Alge, D. L. Assembly of PEG microgels into porous cell-instructive 3D scaffolds via thiol-ene click chemistry. Advanced Healthcare Materials. 7 (11), 1800160 (2018).
  12. Kim, P. -. H., et al. Injectable multifunctional microgel encapsulating outgrowth endothelial cells and growth factors for enhanced neovascularization. Journal of Controlled Release. 187, 1-13 (2014).
  13. Rabea, E. I., Badawy, M. E. -. T., Stevens, C. V., Smagghe, G., Steurbaut, W. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules. 4 (6), 1457-1465 (2003).
  14. Sarmento, B., Goycoolea, F. M., Sosnik, A., das Neves, J. Chitosan and chitosan derivatives for biological applications: chemistry and functionalization. International Journal of Carbohydrate Chemistry. 2011, 1 (2011).
  15. Galdioli Pellá, M. C., et al. Chitosan hybrid microgels for oral drug delivery. Carbohydrate Polymers. 239, 116236 (2020).
  16. Echeverria, C., et al. One-pot synthesis of dual-stimuli responsive hybrid PNIPAAm-chitosan microgels. Materials & Design. 86, 745-751 (2015).
  17. Kim, M. Y., Kim, J. Chitosan microgels embedded with catalase nanozyme-loaded mesocellular silica foam for glucose-responsive drug delivery. ACS Biomaterials Science & Engineering. 3 (4), 572-578 (2017).
  18. Mora-Boza, A., et al. Microfluidics generation of chitosan microgels containing glycerylphytate crosslinker for in situ human mesenchymal stem cells encapsulation. Materials Science and Engineering: C. 120, 111716 (2021).
  19. Zhang, H., Mardyani, S., Chan, W. C. W., Kumacheva, E. Design of biocompatible chitosan microgels for targeted pH-mediated intracellular release of cancer therapeutics. Biomacromolecules. 7 (5), 1568-1572 (2006).
  20. Huang, P., et al. Effect of pH on the mechanical, interfacial, and emulsification properties of chitosan microgels. Food Hydrocolloids. 121, 106972 (2021).
  21. Fletcher, N. A., Krebs, M. D. Sustained delivery of anti-VEGF from injectable hydrogel systems provides a prolonged decrease of endothelial cell proliferation and angiogenesis in vitro. RSC Advances. 8 (16), 8999-9005 (2018).
  22. Fletcher, N. A., Babcock, L. R., Murray, E. A., Krebs, M. D. Controlled delivery of antibodies from injectable hydrogels. Materials Science and Engineering: C. 59, 801-806 (2016).
  23. Fletcher, N. A., Von Nieda, E. L., Krebs, M. D. Cell-interactive alginate-chitosan biopolymer systems with tunable mechanics and antibody release rates. Carbohydrate Polymers. 175, 765-772 (2017).
  24. Erickson, C. B., et al. In vivo degradation rate of alginate-chitosan hydrogels influences tissue repair following physeal injury. Journal of Biomedical Materials Research Part B: Applied Biomaterials. , 34580 (2020).
  25. Erickson, C. B., et al. Anti-VEGF antibody delivered locally reduces bony bar formation following physeal injury in rats. Journal of Orthopaedic Research. , 24907 (2020).
  26. Lee, M. A., Nissen, T. P., Otsuka, N. Y. Utilization of a murine model to investigate the molecular process of transphyseal bone formation. Journal of Pediatric Orthopaedics. 20 (6), 802-806 (2000).
  27. Planka, L., et al. Nanotechnology and mesenchymal stem cells with chondrocytes in prevention of partial growth plate arrest in pigs. Biomedical Papers. 156 (2), 128-134 (2012).
  28. Yu, Y., et al. Rabbit model of physeal injury for the evaluation of regenerative medicine approaches. Tissue Engineering Part C: Methods. 25 (12), 701-710 (2019).
  29. Xian, C. J., Zhou, F. H., McCarty, R. C., Foster, B. K. Intramembranous ossification mechanism for bone bridge formation at the growth plate cartilage injury site. Journal of Orthopaedic Research. 22 (2), 417-426 (2004).
  30. Erickson, C. B., Shaw, N., Hadley-Miller, N., Riederer, M. S., Krebs, M. D., Payne, K. A. A rat tibial growth plate injury model to characterize repair mechanisms and evaluate growth plate regeneration strategies. Journal of Visualized Experiments. (125), e55571 (2017).
  31. Erickson, C., Stager, M., Riederer, M., Payne, K. A., Krebs, M. Emulsion-free chitosan-genipin microgels for growth plate cartilage regeneration. Journal of Biomaterials Applications. 36 (2), 289-296 (2021).
  32. Yang, D., et al. Microfluidic synthesis of chitosan-coated magnetic alginate microparticles for controlled and sustained drug delivery. International Journal of Biological Macromolecules. 182, 639-647 (2021).
  33. Marsili, L., Dal Bo, M., Berti, F., Toffoli, G. Thermoresponsive chitosan-grafted-poly(N-vinylcaprolactam) microgels via ionotropic gelation for oncological applications. Pharmaceutics. 13 (10), 1654 (2021).
  34. Muzzarelli, R., El Mehtedi, M., Bottegoni, C., Aquili, A., Gigante, A. Genipin-crosslinked chitosan gels and scaffolds for tissue engineering and regeneration of cartilage and bone. Marine Drugs. 13 (12), 7314-7338 (2015).
  35. Muzzarelli, R. A. A. Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydrate Polymers. 77 (1), 1-9 (2009).
  36. Butler, M. F., Ng, Y. -. F., Pudney, P. D. A. Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin. Journal of Polymer Science Part A: Polymer Chemistry. 41 (24), 3941-3953 (2003).
  37. Marquez-Curtis, L. A., Janowska-Wieczorek, A. Enhancing the migration ability of mesenchymal stromal cells by targeting the SDF-1/CXCR4 axis. BioMed Research International. 2013, 1-15 (2013).
  38. Tang, Q. O., et al. TGF-β3: A potential biological therapy for enhancing chondrogenesis. Expert Opinion on Biological Therapy. 9 (6), 689-701 (2009).
  39. Hogg, R., Turek, M. L., Kaya, E. The role of particle shape in size analysis and the evaluation of comminution processes. Particulate Science and Technology. 22 (4), 355-366 (2004).
  40. Raval, N., Maheshwari, R., Kalyane, D., Youngren-Ortiz, S. R., Chougule, M. B., Tekade, R. K. Importance of physicochemical characterization of nanoparticles in pharmaceutical product development. Basic Fundamentals of Drug Delivery. , 369-400 (2019).
check_url/it/63857?article_type=t

Play Video

Citazione di questo articolo
Stager, M. A., Erickson, C. B., Payne, K. A., Krebs, M. D. Fabrication of Size-Controlled and Emulsion-Free Chitosan-Genipin Microgels for Tissue Engineering Applications. J. Vis. Exp. (182), e63857, doi:10.3791/63857 (2022).

View Video