Summary

成年小鼠视网膜的视网膜外植体作为研究视网膜神经血管疾病的离 模型

Published: December 09, 2022
doi:

Summary

该协议介绍并描述了从成年小鼠获得的视网膜外植体的分离,解剖,培养和染色的步骤。该方法作为研究不同视网膜神经血管疾病(如糖尿病视网膜病变)的 离体 模型是有益的。

Abstract

视网膜研究的挑战之一是研究不同视网膜细胞(如视网膜神经元、神经胶质细胞和血管细胞)之间的串扰。 体外分离 、培养和维持视网膜神经元具有技术和生物学局限性。培养视网膜外植体可以克服这些限制,并提供独特的 离体 模型来研究具有良好控制生化参数且独立于血管系统的各种视网膜细胞之间的串扰。此外,视网膜外植体是研究各种视网膜血管和神经退行性疾病(如糖尿病视网膜病变)的新型药物干预的有效筛选工具。在这里,我们描述了视网膜外植体长期分离和培养的详细方案。手稿还介绍了在此过程中的一些技术问题,这些问题可能会影响视网膜外植体培养的预期结果和可重复性。视网膜外植体培养开始2周后,视网膜血管、神经胶质细胞和神经元的免疫染色显示视网膜毛细血管和神经胶质细胞完整。这使视网膜外植体成为在模拟糖尿病视网膜病变等视网膜疾病的条件下研究视网膜血管系统和神经胶质细胞变化的可靠工具。

Introduction

已经提出了不同的模型来研究视网膜疾病,包括体内体外模型。动物在研究中的使用仍然是一个持续的伦理和转化辩论问题1。涉及小鼠或大鼠等啮齿动物的动物模型通常用于视网膜研究234。然而,由于啮齿动物视网膜与人类不同的生理功能,例如黄斑缺失或色觉差异5,因此出现了临床问题。使用人类死后眼睛进行视网膜研究也存在许多问题,包括但不限于原始样本的遗传背景、捐赠者的病史以及捐赠者以前的环境或生活方式的差异6.此外,在视网膜研究中使用体外模型也有一些缺点。用于研究视网膜疾病的细胞培养模型包括利用人源细胞系、原代细胞或干细胞7。所使用的细胞培养模型已被证明在被污染、错误识别或去分化方面存在问题891011最近,视网膜类器官技术取得了重大进展。然而,体外构建高度复杂的视网膜有几个局限性。例如,视网膜类器官不具有与成熟的体内视网膜相同的生理和生化特征。为了克服这一限制,视网膜类器官技术必须整合更多的生物和细胞特征,包括平滑肌细胞、脉管系统和免疫细胞,如小胶质细胞12131415

器官型视网膜外植体已成为研究糖尿病视网膜病变和退行性视网膜疾病等视网膜疾病的可靠工具16171819与其他现有技术相比,视网膜外植体的使用通过添加独特的功能来研究相同生化参数下各种视网膜细胞之间的串扰,并且独立于系统变量,从而支持体外视网膜细胞培养和当前的体内动物模型。外植体培养物允许不同的视网膜细胞在同一环境中保持在一起,从而可以保存视网膜细胞间的相互作用20,2122。此外,先前的一项研究表明,视网膜外植体能够保留培养的视网膜细胞的形态结构和功能23。因此,视网膜外植体可以为研究各种视网膜疾病的可能治疗靶点提供一个体面的平台242526。视网膜外植体培养提供了一种可控的技术,并且非常灵活地替代了允许多种药理学操作并可以揭示多种分子机制的现有蛾体27

本文的总体目标是将视网膜外植体技术作为 体外 细胞培养和 体内 动物模型之间的合理中间模型系统。这种技术可以比解离细胞更好地模仿视网膜功能。由于各种视网膜层保持完整,视网膜细胞间相互作用可以在实验室中在控制良好的生化条件下进行评估,并且独立于血管系统功能28

Protocol

所有动物实验均由美国密歇根州罗切斯特奥克兰大学的机构动物护理和使用委员会(IACUC)批准,并遵循视觉和眼科研究协会(ARVO)关于在眼科和视觉研究中使用动物的声明制定的指南。 1. 动物制备 将动物饲养在光照受控的环境中,温度恒定。动物宿舍的温度设置应遵循《实验动物护理和使用指南》的指引。小鼠的温度范围在18°C至26°C之间。 保持湿度?…

Representative Results

视网膜外植体的神经元和血管视网膜细胞在体外培养基中长时间存活 通过使用我们的方案培养视网膜外植体,我们成功地维持了不同的视网膜细胞,这些细胞存活长达 2 周。为了验证不同视网膜细胞的存在,使用神经元细胞标志物(NeuN),神经胶质细胞标志物(GFAP)和血管标志物(异凝集素-B4)对视网膜外植体进行了免疫荧光染色(<strong class="xf…

Discussion

我们的实验室一直在研究促进视网膜微血管功能障碍的病理生理变化31,323334,3536年。视网膜外植体是可以用作研究视网膜疾病(如糖尿病视网膜病变或退行性视网膜疾病)的模型的技术之一。具有来自与治疗组或组相同的单个视网膜或动物…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

我们要感谢美国国立卫生研究院(NIH)向国家眼科研究所(R01 EY030054)提供的资助,感谢Mohamed Al-Shabrawey博士。我们要感谢Kathy Wolosiewicz帮助我们进行视频解说。我们要感谢奥克兰大学眼科研究所儿科视网膜研究实验室的Ken Mitton博士在使用手术显微镜和记录期间提供的帮助。该视频由Khaled Elmasry博士编辑和导演。

Materials

Adult C57Bl/6J mice  The Jackson Laboratory, Bar Harbor, ME, 04609, USA 664
All-in-One Fluorescence Microscope  KEYENCE CORPORATION OF AMERICA, IL, 60143, U.S.A. BZ-X800
B27 supplements Thermo scientific. Waltham, MA, 02451, USA Gibco #17504-04
Blockade blocking solution  Thermo scientific. Waltham, MA, 02451, USA B10710
DMEM F12 Thermo scientific. Waltham, MA, 02451, USA Gibco #11320033
Goat anti-Rabbit IgG. Thermo scientific. Waltham, MA, 02451, USA F-2765
GSL I, BSL I (Isolectin) Vector Laboratories. Burlingame, CA 94010,USA B-1105-2
Hanks Ballanced Salt Solution (HBSS) Thermo scientific. Waltham, MA, 02451, USA Gibco #14175095
Micro Scissors, 12 cm, Diamond Coated Blades World Precision Instruments,FL 34240, USA  Straight (503365)
N2 supplements Thermo scientific. Waltham, MA, 02451, USA Gibco #17502-048
Nunc Polycarbonate Cell Culture Inserts in Multi-Well Plates Thermo scientific. Waltham, MA, 02451, USA 140652
Paraformaldehyde 4% in PBS BBP, Ashland, MA, 01721 USA C25N107
Penicillin-Streptomycin (10,000 U/mL) Thermo scientific. Waltham, MA, 02451, USA 15140148
PROLONG DIAMOND ANTIFADE 4′,6-diamidino-2-phenylindole (DAPI). Thermo scientific. Waltham, MA, 02451, USA P36962
Rabbit Anti-NeuN Antibody Abcam.,Cambridge, UK ab177487
Rabbit Glial Fibrillary Acidic Protein (GFAP) Antibody Dako,Carpinteria, CA 93013, USA. Z0334
Texas Red Vector Laboratories. Burlingame, CA 94010,USA SA-5006-1
TritonX BioRad Hercules, CA,  94547,USA 1610407

Riferimenti

  1. Gauthier, C., Griffin, G. Using animals in research, testing and teaching. Revue Scientifique et Technique. 24 (2), 735-745 (2005).
  2. Fletcher, E. L., et al. Animal models of retinal disease. Progress in Molecular Biology and Translational Science. 100, 211-286 (2011).
  3. Bertschinger, D. R., et al. A review of in vivo animal studies in retinal prosthesis research. Graefe’s Archive for Clinical and Experimental Ophthalmology. 246 (11), 1505-1517 (2008).
  4. Slijkerman, R. W., et al. The pros and cons of vertebrate animal models for functional and therapeutic research on inherited retinal dystrophies. Progress in Retinal and Eye Research. 48, 137-159 (2015).
  5. Sharma, K., Krohne, T. U., Busskamp, V. The rise of retinal organoids for vision research. International Journal of Molecular Sciences. 21 (22), 8484 (2020).
  6. Fradot, M., et al. Gene therapy in ophthalmology: Validation on cultured retinal cells and explants from postmortem human eyes. Human Gene Therapy. 22 (5), 587-593 (2011).
  7. Schnichels, S., et al. Retina in a dish: Cell cultures, retinal explants and animal models for common diseases of the retina. Progress in Retinal and Eye Research. 81, 100880 (2021).
  8. Nardone, R. M. Curbing rampant cross-contamination and misidentification of cell lines. Biotechniques. 45 (3), 221-227 (2008).
  9. Horbach, S., Halffman, W. The ghosts of HeLa: How cell line misidentification contaminates the scientific literature. PLoS One. 12 (10), 0186281 (2017).
  10. MacLeod, R. A., et al. Widespread intraspecies cross-contamination of human tumor cell lines arising at source. International Journal of Cancer. 83 (4), 555-563 (1999).
  11. Tamiya, S., Liu, L., Kaplan, H. J. Epithelial-mesenchymal transition and proliferation of retinal pigment epithelial cells initiated upon loss of cell-cell contact. Investigative Ophthalmology & Visual Science. 51 (5), 2755-2763 (2010).
  12. O’Hara-Wright, M., Gonzalez-Cordero, A. Retinal organoids: A window into human retinal development. Development. 147 (24), (2020).
  13. Li, X., Zhang, L., Tang, F., Wei, X. Retinal organoids: Cultivation, differentiation, and transplantation. Frontiers in Cellular Neuroscience. 15, 638439 (2021).
  14. Zhang, X., Wang, W., Jin, Z. B. Retinal organoids as models for development and diseases. Cell Regeneration. 10 (1), 33 (2021).
  15. Bell, C. M., Zack, D. J., Berlinicke, C. A. Human organoids for the study of retinal development and disease. Annual Reviews of Vision Science. 6, 91-114 (2020).
  16. Mills, S. A., et al. Fractalkine-induced microglial vasoregulation occurs within the retina and is altered early in diabetic retinopathy. Proceedings of the National Academy of Sciences of the United States of America. 118 (51), 2112561118 (2021).
  17. Louie, H. H., et al. Connexin43 hemichannel block inhibits NLRP3 inflammasome activation in a human retinal explant model of diabetic retinopathy. Experimental Eye Research. 202, 108384 (2021).
  18. Wu, X., Yan, N., Zhang, M. Retinal degeneration: Molecular mechanisms and therapeutic strategies. Current Medicinal Chemistry. 29 (40), 6125-6140 (2021).
  19. Armento, A., et al. Complement factor H loss in RPE cells causes retinal degeneration in a human RPE-porcine retinal explant co-culture model. Biomolecules. 11 (11), 1621 (2021).
  20. Murali, A., Ramlogan-Steel, C. A., Andrzejewski, S., Steel, J. C., Layton, C. J. Retinal explant culture: A platform to investigate human neuro-retina. Clinical & Experimental Ophthalmology. 47 (2), 274-285 (2019).
  21. Pattamatta, U., McPherson, Z., White, A. A mouse retinal explant model for use in studying neuroprotection in glaucoma. Experimental Eye Research. 151, 38-44 (2016).
  22. Johnson, T. V., Martin, K. R. Development and characterization of an adult retinal explant organotypic tissue culture system as an in vitro intraocular stem cell transplantation model. Investigative Ophthalmology & Visual Science. 49 (8), 3503-3512 (2008).
  23. Alarautalahti, V., et al. Viability of mouse retinal explant cultures assessed by preservation of functionality and morphology. Investigative Ophthalmology & Visual Science. 60 (6), 1914-1927 (2019).
  24. Smedowski, A., et al. FluoroGold-labeled organotypic retinal explant culture for neurotoxicity screening studies. Oxidative Medicine and Cellular Longevity. 2018, 2487473 (2018).
  25. Bull, N. D., et al. Use of an adult rat retinal explant model for screening of potential retinal ganglion cell neuroprotective therapies. Investigative Ophthalmology & Visual Science. 52 (6), 3309-3320 (2011).
  26. Beeson, C., et al. Small molecules that protect mitochondrial function from metabolic stress decelerate loss of photoreceptor cells in murine retinal degeneration models. Advances in Experimental Medicine and Biology. 854, 449-454 (2016).
  27. Sawamiphak, S., Ritter, M., Acker-Palmer, A. Preparation of retinal explant cultures to study ex vivo tip endothelial cell responses. Nature Protocols. 5 (10), 1659-1665 (2010).
  28. Muller, B. Organotypic culture of adult mouse retina. Methods in Molecular Biology. 1940, 181-191 (2019).
  29. Tual-Chalot, S., Allinson, K. R., Fruttiger, M., Arthur, H. M. Whole mount immunofluorescent staining of the neonatal mouse retina to investigate angiogenesis in vivo. Journal of Visualized Experiments. (77), e50546 (2013).
  30. Garcia-Cabezas, M. A., John, Y. J., Barbas, H., Zikopoulos, B. Distinction of neurons, glia and endothelial cells in the cerebral cortex: An algorithm based on cytological features. Frontiers in Neuroanatomy. 10, 107 (2016).
  31. Elmasry, K., et al. Role of endoplasmic reticulum stress in 12/15-lipoxygenase-induced retinal microvascular dysfunction in a mouse model of diabetic retinopathy. Diabetologia. 61 (5), 1220-1232 (2018).
  32. Elmasry, K., et al. Epigenetic modifications in hyperhomocysteinemia: Potential role in diabetic retinopathy and age-related macular degeneration. Oncotarget. 9 (16), 12562-12590 (2018).
  33. Al-Shabrawey, M., et al. Role of NADPH oxidase and Stat3 in statin-mediated protection against diabetic retinopathy. Investigative Ophthalmology & Visual Science. 49 (7), 3231-3238 (2008).
  34. Al-Shabrawey, M., et al. Increased expression and activity of 12-lipoxygenase in oxygen-induced ischemic retinopathy and proliferative diabetic retinopathy: Implications in retinal neovascularization. Diabetes. 60 (2), 614-624 (2011).
  35. Hussein, K. A., et al. Bone morphogenetic protein 2: A potential new player in the pathogenesis of diabetic retinopathy. Experimental Eye Research. 125, 79-88 (2014).
  36. Ibrahim, A. S., et al. Pigment epithelium-derived factor inhibits retinal microvascular dysfunction induced by 12/15-lipoxygenase-derived eicosanoids. Biochimica et Biophysica Acta. 1851 (3), 290-298 (2015).
  37. Belhadj, S., et al. Long-term, serum-free cultivation of organotypic mouse retina explants with intact retinal pigment epithelium. Journal of Visualized Experiments. (165), e61868 (2020).
  38. Kuo, C. Y. J., Louie, H. H., Rupenthal, I. D., Mugisho, O. O. Characterization of a novel human organotypic retinal culture technique. Journal of Visualized Experiments. (172), e62046 (2021).
  39. Sawamiphak, S., et al. Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature. 465 (7297), 487-491 (2010).
  40. Curatola, A. M., Moscatelli, D., Norris, A., Hendricks-Munoz, K. Retinal blood vessels develop in response to local VEGF-A signals in the absence of blood flow. Experimental Eye Research. 81 (2), 147-158 (2005).
  41. Unoki, N., Murakami, T., Ogino, K., Nukada, M., Yoshimura, N. Time-lapse imaging of retinal angiogenesis reveals decreased development and progression of neovascular sprouting by anecortave desacetate. Investigative Ophthalmology & Visual Science. 51 (5), 2347-2355 (2010).
  42. DeNiro, M., Alsmadi, O., Al-Mohanna, F. Modulating the hypoxia-inducible factor signaling pathway as a therapeutic modality to regulate retinal angiogenesis. Experimental Eye Research. 89 (5), 700-717 (2009).
  43. Murakami, T., et al. Time-lapse imaging of vitreoretinal angiogenesis originating from both quiescent and mature vessels in a novel ex vivo system. Investigative Ophthalmology & Visual Science. 47 (12), 5529-5536 (2006).
  44. Unoki, N., et al. SDF-1/CXCR4 contributes to the activation of tip cells and microglia in retinal angiogenesis. Investigative Ophthalmology & Visual Science. 51 (7), 3362-3371 (2010).
  45. Knott, R. M., et al. A model system for the study of human retinal angiogenesis: activation of monocytes and endothelial cells and the association with the expression of the monocarboxylate transporter type 1 (MCT-1). Diabetologia. 42 (7), 870-877 (1999).
  46. Im, E., Venkatakrishnan, A., Kazlauskas, A. Cathepsin B regulates the intrinsic angiogenic threshold of endothelial cells. Molecular Biology of the Cell. 16 (8), 3488-3500 (2005).
  47. Shafiee, A., et al. Inhibition of retinal angiogenesis by peptides derived from thrombospondin-1. Investigative Ophthalmology & Visual Science. 41 (8), 2378-2388 (2000).
  48. Brown, K. C., et al. MG624, an α7-nAChR antagonist, inhibits angiogenesis via the Egr-1/FGF2 pathway. Angiogenesis. 15 (1), 99-114 (2012).
  49. Rezzola, S., et al. A novel ex vivo murine retina angiogenesis (EMRA) assay. Experimental Eye Research. 112, 51-56 (2013).
  50. Liu, D., et al. Overexpression of BMP4 protects retinal ganglion cells in a mouse model of experimental glaucoma. Experimental Eye Research. 210, 108728 (2021).
  51. Januschowski, K., et al. Ex vivo biophysical characterization of a hydrogel-based artificial vitreous substitute. PLoS One. 14 (1), 0209217 (2019).
  52. Tolmachova, T., et al. Functional expression of Rab escort protein 1 following AAV2-mediated gene delivery in the retina of choroideremia mice and human cells ex vivo. Journal of Molecular Medicine. 91 (7), 825-837 (2013).
  53. Vinberg, F., Kolesnikov, A. V., Kefalov, V. J. Ex vivo ERG analysis of photoreceptors using an in vivo ERG system. Vision Research. 101, 108-117 (2014).
  54. Vinberg, F., Kefalov, V. Simultaneous ex vivo functional testing of two retinas by in vivo electroretinogram system. Journal of Visualized Experiments. (99), e52855 (2015).
  55. Bonezzi, P. J., Tarchick, M. J., Renna, J. M. Ex vivo electroretinograms made easy: Performing ERGs using 3D printed components. Journal of Physiology. 598 (21), 4821-4842 (2020).
  56. Kaikkonen, O., Turunen, T. T., Meller, A., Ahlgren, J., Koskelainen, A. Retinal temperature determination based on photopic porcine electroretinogram. IEEE Transactions on Biomedical Engineering. 69 (2), 991-1002 (2022).
  57. Gospe, S. M., et al. 3rd al. Photoreceptors in a mouse model of Leigh syndrome are capable of normal light-evoked signaling. Journal of Biological Chemistry. 294 (33), 12432-12443 (2019).
  58. Calbiague, V. M., Vielma, A. H., Cadiz, B., Paquet-Durand, F., Schmachtenberg, O. Physiological assessment of high glucose neurotoxicity in mouse and rat retinal explants. Journal of Comparative Neurology. 528 (6), 989-1002 (2020).
check_url/it/63966?article_type=t

Play Video

Citazione di questo articolo
Elmasry, K., Moustafa, M., Al-Shabrawey, M. Retinal Explant of the Adult Mouse Retina as an Ex Vivo Model for Studying Retinal Neurovascular Diseases. J. Vis. Exp. (190), e63966, doi:10.3791/63966 (2022).

View Video