Summary

原代培养中分化的小鼠脂肪细胞:胰岛素抵抗模型

Published: February 17, 2023
doi:

Summary

该协议描述了从皮下脂肪中分离小鼠前脂肪细胞,它们分化为成熟脂肪细胞以及诱导胰岛素抵抗。通过蛋白质印迹的胰岛素信号通路成员的磷酸化/激活来评估胰岛素作用。该方法可以直接测定原代脂肪细胞的胰岛素抵抗/敏感性。

Abstract

胰岛素抵抗是胰岛素对其靶细胞的影响降低,通常源于胰岛素受体信号传导的减少。胰岛素抵抗导致2型糖尿病(T2D)和其他肥胖衍生疾病的发展,这些疾病在世界范围内患病率很高。因此,了解胰岛素抵抗的潜在机制非常重要。几种模型已被用于研究 体内体外胰岛素抵抗;原代脂肪细胞是研究胰岛素抵抗机制和鉴定抵消这种情况的分子和胰岛素增敏药物分子靶标的一种有吸引力的选择。在这里,我们使用用肿瘤坏死因子-α(TNF-α)处理的培养物中的原代脂肪细胞建立了胰岛素抵抗模型。

通过磁细胞分离技术从胶原酶消化的小鼠皮下脂肪组织中分离出的脂肪细胞前体细胞(APC)分化为原代脂肪细胞。然后通过TNF-α治疗诱导胰岛素抵抗,TNF-是一种促炎细胞因子,可减少胰岛素信号级联反应成员的酪氨酸磷酸化/激活。通过蛋白质印迹定量胰岛素受体 (IR)、胰岛素受体底物 (IRS-1) 和蛋白激酶 B (AKT) 磷酸化降低。该方法为研究脂肪组织中介导胰岛素抵抗的机制提供了极好的工具。

Introduction

胰岛素是由胰岛β细胞产生的合成代谢激素,是葡萄糖和脂质代谢的关键调节因子。在其众多功能中,胰岛素调节葡萄糖摄取、糖原合成、糖异生、蛋白质合成、脂肪生成和脂肪分解1。胰岛素与其受体(IR)相互作用后的初始分子信号是IR2的内在酪氨酸蛋白激酶活性的激活,导致其自身磷酸化3和随后称为胰岛素受体底物(IRS)的蛋白质家族的激活,其与衔接蛋白结合导致级联蛋白激酶的激活4.胰岛素激活两种主要的信号通路:磷脂酰肌醇3激酶(PI3K)蛋白激酶B(AKT)和Ras-丝裂原活化蛋白激酶(MAPK)。前者构成一个主要的分支点或节点45,用于激活参与各种生理功能的众多下游效应子,包括调节燃料稳态,而后者调节细胞生长和分化46胰岛素作用最终取决于细胞类型和生理环境7

主要的胰岛素反应代谢组织之一是脂肪组织。白色脂肪组织是人类和啮齿动物中最丰富的脂肪类型,分布在皮下脂肪(皮肤和肌肉之间)和内脏脂肪(腹腔器官周围)中。鉴于其体积大,脂肪细胞或脂肪细胞是脂肪组织中最丰富的细胞类型。这些脂肪细胞可以是棕色/米色(产热)、粉红色(乳腺)和白色89。白色脂肪细胞以甘油三酯的形式保持体内的主要能量储备,这是一种胰岛素依赖性过程。胰岛素促进葡萄糖转运和脂肪生成,同时抑制脂肪分解或脂质分解710。它还有助于前脂肪细胞分化为脂肪细胞 – 成熟的脂肪储存细胞11

当正常胰岛素水平产生减弱的生物反应时,就会发生胰岛素抵抗,从而导致代偿性高胰岛素血症12。胰岛素抵抗是一种与超重和肥胖相关的疾病5,当它们结合在一起时会导致2型糖尿病(T2D)和其他代谢性疾病13。高胰岛素血症补偿外周组织中的胰岛素抵抗,以维持正常的血糖水平14。然而,最终的β细胞丢失或衰竭,以及胰岛素抵抗加剧,导致血糖水平升高,符合T2D5。因此,胰岛素抵抗和高胰岛素血症可导致肥胖衍生代谢疾病的发展15。此外,肥胖可能导致慢性低度局部炎症,促进脂肪组织中的胰岛素抵抗151617。此外,肥胖引起的脂肪组织改变,如纤维化、炎症以及血管生成和脂肪生成减少,导致脂联素血清水平(一种胰岛素增敏剂)降低,纤溶酶原激活剂抑制剂 1 (PAI-1)、游离脂肪酸和外泌体等因子分泌增加进入血液,加剧胰岛素抵抗17

胰岛素抵抗的许多方面仍然未知。已经开发了体外体内模型来研究介导主要靶组织(包括脂肪组织)中胰岛素抵抗的机制。体外模型的优点是研究人员可以更好地控制环境条件,并且可以评估特定细胞类型的胰岛素抵抗。特别是,脂肪细胞前体细胞(APC)具有供体组织的个体表型,这可能比脂肪细胞系更好地反映生理学。体外诱导胰岛素抵抗的一个主要因素是肿瘤坏死因子-α(TNF-α)。TNF-α是由脂肪组织中的脂肪细胞和巨噬细胞分泌的促炎细胞因子18。虽然适当的脂肪组织重塑和扩增是必需的19,但长期暴露于TNF-α会在体内脂肪组织和体外脂肪细胞中诱导胰岛素抵抗20。几种细胞类型的慢性TNF-α处理导致IR和IRS-1的丝氨酸磷酸化增加,从而促进酪氨酸磷酸化减少21。IRS-1在丝氨酸残基上的磷酸化增加抑制IR酪氨酸激酶活性,可能是慢性TNF-α治疗损害胰岛素作用的关键机制之一2223。TNF-α激活涉及核因子ĸB激酶β(IKKβ)和c-Jun N末端激酶(JNK)的丝氨酸/苏氨酸激酶抑制剂的途径24。JNK诱导复杂的促炎转录程序,但也直接磷酸化IRS-16

了解胰岛素抵抗的发病机制对于指导未来针对T2D的疗法的开发变得越来越重要。APC已被证明是研究脂肪细胞生物学的优秀模型,包括对胰岛素的敏感性和抵抗力,以及独立于全身环境鉴定脂肪细胞的内在特性。APC可以很容易地从不同的脂肪库获得,并在适当的条件下分化成成熟的脂肪细胞。使用这种方法,可以评估对脂肪细胞中胰岛素抵抗/敏感性的直接影响。

Protocol

所有啮齿动物实验均由墨西哥国立自治大学神经生物学研究所生物伦理学委员会批准,协议编号075。 1.小鼠脂肪细胞前体细胞的分离 对8-10周龄的雄性C57BL / 6小鼠实施安乐死(例如,通过CO2吸入和随后的宫颈脱位)(每次分离四只动物)。用70%乙醇摩擦对小鼠进行消毒,并在处死后立即获得脂肪组织。注意:啮齿动物安乐死后,立即分离脂肪组?…

Representative Results

在过去的几年中,肥胖和T2D患病率的增加促使人们强烈寻找介导脂肪组织中胰岛素抵抗的机制。通过此处描述的方案,APC可以分化为成熟的脂肪细胞,以评估胰岛素抵抗和敏感性。一旦APC达到汇合,则需要10天才能完成分化为成熟脂肪细胞及其TNF-α介导的胰岛素抵抗诱导(图1)。 APCs显示出成纤维细胞样形态,其特征在于其扁平和细长的形状以及它们在?…

Discussion

本文提供了一种研究胰岛素抵抗的方法,该方法使用用TNF-α处理的培养物中的原代脂肪细胞。该模型的优点是原代脂肪细胞可以在规定的条件下长时间培养,并严格控制细胞环境因素26。测定持续时间为15-20天,尽管实验之间可能发生分化脂肪细胞百分比的变化。原代脂肪细胞比细胞系具有优势,因为它们在培养中没有持续扩增,并且更紧密地捕获了它们来源的组织多样性<sup clas…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

我们感谢丹尼尔·蒙德拉贡、安东尼奥·普拉多、费尔南多·洛佩斯-巴雷拉、马丁·加西亚-塞尔文、亚历杭德拉·卡斯蒂利亚和玛丽亚·安东尼埃塔·卡尔巴霍的技术援助,感谢杰西卡·冈萨雷斯·诺里斯对手稿的批判性编辑。该议定书得到了墨西哥国家科学和技术委员会(CONACYT)、教育部门研究基金赠款284771(致Y.M.)的支持。

Materials

1. Isolation mouse adipocyte precursor cells
ACK lysing buffer  LONZA 10-548E
Anti-Biotin Microbeads  Miltenyi 130-090-485
Anti-CD31 eBioscience 13-0311-85
AutoMACS Pro Separator Miltenyi
Basement membrane matrix (matrigel) Corning 354234
bFGF Sigma F0291 Growth factor
BSA Equitech-Bio, Inc. BAC63-1000
CD45 Monoclonal Antibody (30-F11) – Biotin  eBioscience 13-0451-85
Collagenase, Type 1 Worthington Biochem LS004197
Dexamethasone Sigma D1756
DMEM GIBCO 12800017
DMEM low glucose GIBCO 31600-034
EGF Peprotech 315-09 Growth factor
FBS GIBCO 26140-079
ITS mix Sigma I3146
L-ascorbic acid 2-phosphate Sigma A8960
LIF Millipore ESG1107 Growth factor
Linoleic acid-albumin Sigma L9530
MCDB 201 medium Sigma M6770
Normocin InvivoGen ant-nr-2
PDGF-BB  Peprotech 315-18 Growth factor
Peniciline-Streptomycine BioWest L0022-100
Pre-Separation Filters (70 µm) Miltenyi 130-095-823
Purified Rat Anti-Mouse CD16 / CD32  BD Pharmingen 553142
Trypsin-EDTA  GIBCO 25300062
2. Adipocyte differentiation and insulin resistance induction
3-Isobutyl-1-methylxanthine [IBMX] Sigma I5879 Differentiation cocktail
BMP4 R&D Systems 5020-BP-010 Differentiation cocktail
Dexamethasone Sigma D1756 Differentiation cocktail
Insulin Sigma I9278
Rosiglitazone Cayman 71742 Differentiation cocktail
TNFα R&D Systems 210-TA-005 
3. Evaluation of insulin signaling pathway by western blot
Anti-beta tubulin antibody Abcam ab6046
Bromophenol blue BioRad 161-0404 Laemmli buffer
EDTA Sigma E5134 RIPA buffer
EGTA Sigma E4378 RIPA buffer
FluorChem E system ProteinSimple
Glycerol Sigma G6279 Laemmli buffer
Glycine Sigma G7126 Running and Transfer buffer
Igepal Sigma I3021 RIPA buffer
2- mercaptoethanol Sigma M3148 Laemmli buffer
Methanol JT Baker 907007 Transfer buffer
NaCl JT Baker 3624-05 TBS-T
NaF Sigma 77F-0379 RIPA buffer
NaOH  JT Baker 3722-19
Na4P2O7 Sigma 114F-0762 RIPA buffer
Na3VO4 Sigma S6508 RIPA buffer
Nitrocellulose membrane  BioRad 1620112
Nonfat dry milk BioRad 1706404 Blocking solution
Prestained protein standard  BioRad 1610395
Protease inhibitor cocktail  Sigma P8340-5ML
Peroxidase AffiniPure Donkey Anti-Rabbit IgG (H+L)  Jackson ImmunoResearch 711-035-132
Phospho- Insulin Receptor β  Cell signaling 3024
Phospho-Akt (Ser473) Antibody Cell signaling 9271
Phospho-IRS1 (Tyr608) antibody Millipore 9432
Saccharose  JT Baker 407205 RIPA buffer
SDS BioRad 1610302 Running and laemmli buffer
SuperSignal West Pico PLUS Chemiluminescent Substrate Thermo Scientific 34577
Tris-base Promega H5135 Running, transfer and laemmli buffer
Tris-HCl JT Baker 4103-02 RIPA buffer – TBS
Tween 20 Sigma P1379 TBS-T

Riferimenti

  1. Elmus, G. B. Insulin signaling and insulin resistance. Journal of Investigative Medicine. 61 (1), 11-14 (2013).
  2. Kasuga, M., Zick, Y., Blithe, D. L., Crettaz, M., Kahn, C. R. Insulin stimulates tyrosine phosphorylation of the insulin receptor in a cell-free system. Nature. 298 (5875), 667-669 (1982).
  3. Kasuga, M., Karlsson, F. A., Kahn, C. R. Insulin stimulates the phosphorylation of the 95,000-dalton subunit of its own receptor. Science. 215 (4529), 185-187 (1982).
  4. Taniguchi, C. M., Emanuelli, B., Kahn, C. R. Critical nodes in signalling pathways: insights into insulin action. Nature Reviews Molecular Cell Biology. 7 (2), 85-96 (2006).
  5. Insulin Resistance. StatPearls Available from: https://www.ncbi.nlm.nih.gov/books/NBK507839/ (2021)
  6. Petersen, M. C., Shulm, G. I. Mechanisms of insulin action and insulin resistance. Physiological Reviews. 98 (4), 2133-2223 (2018).
  7. Batista, T. M., Haider, N., Kahn, C. R. Defining the underlying defect in insulin action in type 2 diabetes. Diabetologia. 64 (5), 994-1006 (2021).
  8. Unamuno, X., Frühbeck, G., Catalán, V. Adipose Tissue. Encyclopedia of Endocrine Diseases. Second edition. , 370-384 (2019).
  9. Cinti, S. Pink adipocytes. Trends in Endocrinology & Metabolism. 29 (9), 651-666 (2018).
  10. Kahn, B. B., Flier, J. S. Obesity and insulin resistance. The Journal of Clinical Investigation. 106 (4), 473-481 (2000).
  11. Klemm, D. J., et al. Insulin-induced adipocyte differentiation. The Journal of Biological Chemistry. 276 (30), 28430-28435 (2001).
  12. Wilcox, G. Insulin and insulin resistance. The Clinical Biochemist. Reviews. 26 (2), 19-39 (2005).
  13. Yohannes, T. W. Obesity, insulin resistance, and type 2 diabetes: associations and therapeutic implications. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 13, 3611-3616 (2020).
  14. James, D. E., Stöckli, J., Birnbaum, M. J. The etiology and molecular landscape of insulin resistance. Nature Reviews Molecular Cell Biology. 22 (11), 751-771 (2021).
  15. Wondmkun, Y. T. Obesity, insulin resistance, and type 2 diabetes: associations and therapeutic implications. Diabetes, Metabolic Syndrime and Obesity: Targets and Therapy. 9 (13), 3611-3616 (2020).
  16. Hardy, O. T., Czech, M. P., Corvera, S. What causes the insulin resistance underlying obesity. Current Opinion in Endocrinology, Diabetes, and Obesity. 19 (2), 81-87 (2012).
  17. Klein, S., Gastaldelli, A., Yki-Järvinen, H., Scherer, P. E. Why does obesity cause diabetes. Cell Metabolism. 34 (1), 11-20 (2022).
  18. Lo, K., et al. Analysis of in vitro insulin-resistance models and their physiological relevance to in vivo diet-induced adipose insulin resistance. Cell Reports. 5 (1), 259-270 (2013).
  19. Asterholm, I. W., et al. Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metabolism. 20 (1), 103-118 (2014).
  20. Hotamisligil, G. S., Murray, D. L., Choy, L. N., Spiegelman, B. M. Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proceedings of the National Academy of Sciences. 91 (11), 4854-4858 (1994).
  21. Ruan, H., Hacohen, N., Golub, T. R., Parijs, L. V., Lodish, H. F. Tumor necrosis factor-α suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes. Nuclear factor-κB activation by TNF-α is obligatory. Diabetes. 51 (5), 1319-1336 (2002).
  22. Boucher, J., Kleinridders, A., Kahn, C. R. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harbor Perspectives in Biology. 6 (1), 009191 (2014).
  23. Hotamisligil, G. S., et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science. 271 (5249), 665-668 (1996).
  24. Copps, K. D., White, M. F. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia. 55 (10), 2565-2582 (2012).
  25. Gassmann, M., Grenacher, B., Rohde, B., Vogel, J. Quantifying western blots: pitfalls of densitometry. Electrophoresis. 30 (11), 1845-1855 (2009).
  26. Skurk, T., Hauner, H. Primary culture of human adipocyte precursor cells: expansion and differentiation. Methods in Molecular Biology. 806, 215-226 (2012).
  27. Hausman, D. B., Park, H. J., Hausman, G. J. Isolation and culture of preadipocytes from rodent white adipose tissue. Methods in Molecular Biology. 456, 201-219 (2008).
  28. Macotela, Y., et al. Intrinsic differences in adipocyte precursor cells from different white fat depots. Diabetes. 61 (7), 1691-1699 (2012).
  29. Rodeheffer, M. S., Birsoy, K., Friedman, J. M. Identification of white adipocyte progenitor cells in vivo. Cell. 135 (2), 240-249 (2008).
  30. Hausman, D. B., DiGirolamo, M., Bartness, T. J., Hausman, G. J., Martin, R. J. The biology of white adipocyte proliferation. Obesity Reviews. 2 (4), 239-254 (2001).
  31. Kirkland, I. M., Tchkonia, T., Pirtskhalava, T., Han, J., Karagiannides, I. Adipogenesis and aging: does aging make fat go MAD. Experimental Geronotology. 37 (6), 757-767 (2002).
  32. Guo, W., et al. Aging results in paradoxical susceptibility of fat cell progenitors to lipotoxicity. American Journal of Physiology. Endocrinology and Metabolism. 292 (4), 1041-1051 (2007).
  33. Ruan, H., Hacohen, N., Golub, T. R., Van Parijs, L., Lodish, H. F.Tumor necrosis factor-a suppresses adipocyte-specific genes and activatesexpression of preadipocyte genes in 3T3-L1 adipocytes: nuclear factor-kappaB activation by TNF-a is obligatory. Diabetes. 51 (5), 1319-1336 (2002).
  34. Jager, J., Gre ́meaux, T., Cormont, M., Le Marchand-Brustel, Y., Tanti, J. F. Interleukin-1b-induced insulin resistance in adipocytes throughdown-regulation of insulin receptor substrate-1 expression. Endocrinology. 148 (1), 241-251 (2007).
  35. Rotter, V., Nagaev, I., Smith, U. Interleukin-6 (IL-6) induces insulinresistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-a,overexpressed in human fat cells from insulin-resistant subjects. The Journal of Biological Chemistry. 278 (46), 45777-45784 (2003).
  36. Isidor, M. S., et al. Insulin resistance rewires the metabolic gene program and glucose utilization in human white adipocytes. International Journal of Obesity. 46 (3), 535-543 (2021).
  37. Houstis, N., Rosen, E. D., Lander, E. S. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature. 440 (7086), 944-948 (2006).
check_url/it/63979?article_type=t

Play Video

Citazione di questo articolo
Ruiz-Herrera, X., Luzardo-Ocampo, I., Martínez de la Escalera, G., Clapp, C., Macotela, Y. Differentiated Mouse Adipocytes in Primary Culture: A Model of Insulin Resistance. J. Vis. Exp. (192), e63979, doi:10.3791/63979 (2023).

View Video