Summary

Preparación de bisaziridinas contiguas para reacciones regioselectivas de apertura de anillo

Published: July 28, 2022
doi:

Summary

Las bisaziridinas contiguas que contenían aziridinas no activadas y activadas se sintetizaron mediante aziridinaciones organocatalíticas asimétricas y luego se sometieron a reacciones quimioselectivas de apertura de anillo en condiciones ácidas o básicas. El anillo de aziridina no activado se abre con nucleófilos menos reactivos en condiciones ácidas, mientras que el anillo de aziridina activada se abre con nucleófilos más reactivos en condiciones básicas.

Abstract

Las aziridinas, una clase de moléculas orgánicas reactivas que contienen un anillo de tres miembros, son sintones importantes para la síntesis de una gran variedad de compuestos diana funcionalizados que contienen nitrógeno a través de la apertura de anillo regiocontrolada de aziridinas sustituidas por C. A pesar del tremendo progreso en la síntesis de aziridina durante la última década, el acceso eficiente a las bisaziridinas contiguas sigue siendo difícil. Por lo tanto, estábamos interesados en sintetizar bisaziridinas contiguas que llevan un conjunto electrónicamente diverso de N-sustituyentes más allá de la columna vertebral única de aziridina para reacciones regioselectivas de apertura de anillo con diversos nucleófilos. En este estudio, las bisaziridinas contiguas quirales se prepararon mediante aziridinación asimétrica organocatalítica de (E)-3-((S)-1-((R)-1-feniletil)aziridina-2-il)acrilaldehído quiral con N-Ts-O-tosil o N-Boc-O-tosil hidroxilamina como fuente de nitrógeno en presencia de (2S)-[difenil(trimetilsililoxi)metil]pirrolidina como organocatalizador quiral. También se demuestran aquí ejemplos representativos de reacciones regioselectivas de apertura de anillos contiguas de bisaziridinas con una variedad de nucleófilos como azufre, nitrógeno, carbono y oxígeno, y la aplicación de bisaziridinas contiguas a la síntesis de pirrolidinas quirales multisustituidas por hidrogenación catalizada por Pd.

Introduction

El diseño racional de pequeñas moléculas orgánicas con diversos sitios reactivos que controlan con precisión la selectividad del producto es un objetivo clave en la síntesis orgánica moderna y la química verde 1,2,3,4,5,6,7,8. Para lograr este objetivo, nos interesaba la síntesis modular de aziridinas. Las aziridinas son de interés para la mayoría de los químicos orgánicos, debido a su marco estructuralmente importante9 con un conjunto electrónicamente diverso de N-sustituyentes que pueden conducir a reacciones regioselectivas de apertura de anillo con múltiples nucleófilos 10,11,12,13,14,15,16,17,18, 19, y variadas actividades farmacológicas como propiedades antitumorales, antimicrobianas y antibacterianas. A pesar de los avances en la química de la aziridina, la aziridina no activada y la aziridina activada tienen síntesis independientes y reacciones de apertura de anillo en la literatura20.

Por lo tanto, nuestro objetivo fue sintetizar bisaziridinas contiguas que comprenden tanto las aziridinas no activadas como las activadas. Estas bisaziridinas contiguas se pueden utilizar para racionalizar sistemáticamente un patrón quimioselectivo de apertura de anillo basado en las siguientes propiedades electrónicas de las dos aziridinas diferentes y su reactividad a nucleófilos 20,21,22,23,24: a) aziridinas activadas, en las que los sustituyentes que retiran electrones estabilizan conjugativamente la carga negativa sobre el nitrógeno, reaccionan fácilmente con múltiples nucleófilos a permitir productos abiertos con anillo; b) las aziridinas no activadas, en las que el nitrógeno se une a los sustituyentes donantes de electrones, son considerablemente inertes hacia los nucleófilos; por lo tanto, se requiere un paso de preactivación con un activador adecuado (principalmente ácidos de Brønsted o Lewis) para permitir los productos abiertos en anillo en altos rendimientos20,21,25,26.

El presente estudio describe el diseño racional de bisaziridinas contiguas como bloques de construcción quirales a través de la organocatálisis libre de metales de transición y la síntesis de diversas moléculas ricas en nitrógeno utilizando herramientas de modelado predictivo para reacciones de apertura de anillo de bisaziridinas. Este estudio tiene como objetivo estimular el avance de métodos prácticos para la construcción de compuestos bioactivos enriquecidos con nitrógeno y productos naturales y la polimerización de aziridinas.

Protocol

Los detalles de todos los productos sintetizados (1-5), incluida la estructura, los espectros completos de RMN, la pureza óptica y los datos HRMS-MALDI, se proporcionan en el Archivo Suplementario 1. 1. Síntesis de 3-(aziridina-2-il)acril aldehído (1a) Secar a la llama un matraz de fondo redondo de 50 ml equipado con una barra agitadora y un tabique en condiciones de vacío. Enfríelo a temperatura ambiente mientras lo llena con g…

Representative Results

Para investigar la posibilidad de preparar una bisaziridina contigua, (E)-3-((S)-1-((R)-1-feniletil)aziridina-2-il)acrilaldehído (1a) se sintetizó primero como sustrato modelo de acuerdo con el procedimiento mencionado en el paso 1 (Figura 1)28. Fig…

Discussion

La formación de una mezcla inseparable de diastereómeros se ha observado ocasionalmente durante el curso de la aziridinación organocatalítica de 3-[1-(1-feniletil)aziridina-2-il)]acrilaldehído quiral, cuando se utilizó N-Boc-O-tosil o N-Ts-O-tosil hidroxilamina como fuente de nitrógeno. Además, el rendimiento del producto de bisaziridina contigua disminuyó cuando la cantidad de dialilo silil éter prolinol como catalizador se incrementó de 7 mol% a 20 mol%47…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Esta investigación fue apoyada por la subvención del Instituto de Ciencias Básicas de Corea (Centro Nacional de Instalaciones y Equipos de Investigación) financiada por el Ministerio de Educación (2022R1A6C101A751). Este trabajo también fue apoyado por las subvenciones de la Fundación Nacional de Investigación de Corea (NRF) (2020R1A2C1007102 y 2021R1A5A6002803).

Materials

(R)-(+)-α,α-Diphenyl-2-pyrrolidinemethanol trimethylsilyl ether Sigma-Aldrich 677191 reagent
(R)-1-((R)-1-phenylethyl)aziridine-2-carbaldehyde Imagene Co.,Ltd. reagent
(S)-(–)-α,α-Diphenyl-2-pyrrolidinemethanol trimethylsilyl ether Sigma-Aldrich 677183 reagent
(S)-2-(diphenyl((trim ethylsilyl)oxy)methyl)pyrrolidine Sigma-Aldrich 677183 reagent
(Triphenylphosphoranylidene) acetaldehyde Sigma-Aldrich 280933 reagent
1,2-Dichloroethane Sigma-Aldrich 284505 solvent
AB Sciex 4800 Plus MALDI TOFTM (2,5-dihydroxybenzoic acid (DHB) matrix Sciex High resolution mass spectra
Acetic acid Sigma-Aldrich A6283 reagent
Ammonium chloride Sigma-Aldrich 254134 reagent
aniline Sigma-Aldrich 132934 reagent
Autopol III digital polarimeter Rudolph Research Analytical polarimeter
AVANCE III HD (400 MHz) spectrometer Bruker NMR spectrometer
Bruker Ascend 500 (500 MHz) Bruker NMR spectrometer
Celite 535 Sigma-Aldrich 22138 For Celite pad
Dichloromethane Sigma-Aldrich 270997 solvent
Di-tert-butyl dicarbonate Sigma-Aldrich 361941 reagent
Ethyl Acetate Sigma-Aldrich 270989 solvent
Ethyl nitroacetate Sigma-Aldrich 192333 reagent
Imidazole Sigma-Aldrich I2399 reagent
INOVA 400WB (400 MHz) Varian NMR spectrometer
JMS-700 JEOL High resolution mass spectra
Methanol Sigma-Aldrich 322415 solvent
N-Boc-O-tosylhydroxylamine Sigma-Aldrich 775037 reagent
P-2000 JASCO polarimeter
Palladium hydroxide on carbon Sigma-Aldrich 212911 reagent
Phenyl-1H-tetrazole-5-thiol TCI P0640 reagent
Silica gel Sigma-Aldrich 227196 For flash clromatography
Silica gel on TLC plates Merck 60768 TLC plate
Sodium acetate Sigma-Aldrich S8750 reagent
Sodium azide Sigma-Aldrich S2002 reagent
Sodium borohydride Sigma-Aldrich 452882 reagent
Sodium carbonate Sigma-Aldrich S2127 reagent
tert-Butyldimethylsilyl chloride Sigma-Aldrich 190500 reagent
Tetrahydrofuran Sigma-Aldrich 401757 solvent
Toluene Sigma-Aldrich 244511 solvent
Zinc bromide Sigma-Aldrich 230022 reagent
Zinc chloride Sigma-Aldrich 429430 reagent

Riferimenti

  1. Anastas, P. T., Warner, J. C. Principles of green chemistry. Green Chemistry: Theory and Practice. 29, (1998).
  2. Sheldon, R. A., Arends, I. W. C. E., Hanefeld, U. . Green Chemistry and Catalysis. , (2007).
  3. Trost, B. M. The atom economy-a search for synthetic efficiency. Science. 254 (5037), 1471-1477 (1991).
  4. Sheldon, R. A. The E factor: fifteen years on. Green Chemistry. 9 (12), 1273-1283 (2007).
  5. Li, C. J., Trost, B. M. Green chemistry for chemical synthesis. Proceedings of the National Academy of Sciences. 105 (36), 13197-13202 (2008).
  6. Sheldon, R. A. Fundamentals of green chemistry: efficiency in reaction design. Chemical Society Reviews. 41 (4), 1437-1451 (2012).
  7. Marion, P., et al. Sustainable chemistry: how to produce better and more from less. Green Chemistry. 19 (21), 4973-4989 (2017).
  8. Sheldon, R. A. The E factor 25 years on: the rise of green chemistry and sustainability. Green Chemistry. 19 (1), 18-43 (2017).
  9. Dembitsky, V. M., Terent’ev, A. O., Levitsky, D. O. Aziridine alkaloids: origin, chemistry and activity. Natural Products. , 977-1006 (2013).
  10. Ham, G. E. Activated aziridines. I. Reaction of anilines with O-ethyl-N,N-ethyleneurethane. mechanism and Hammett ρ-constant. Journal of Organic Chemistry. 29 (10), 3052-3055 (1964).
  11. Tanner, D. Chiral aziridine-their synthesis and use in stereoselective transformations. Angewandte Chemie International Edition. 33 (6), 599-619 (1994).
  12. Atkinson, R. S. 3-Acetoxyaminoquinazolinones (QNHOAc) as aziridinating agents: ring-opening of N-(Q)-substituted aziridines. Tetrahedron. 55 (6), 1519-1559 (1999).
  13. Sweeney, J. B. Aziridines: epoxides’ ugly cousins. Chemical Society Reviews. 31 (5), 247-258 (2002).
  14. Lu, P. Recent developments in regioselective ring opening of aziridines. Tetrahedron. 14 (66), 2549-2560 (2010).
  15. Ohno, H. Synthesis and applications of vinylaziridines and ethynylaziridines. Chemical Reviews. 114 (16), 7784-7814 (2014).
  16. Callebaut, G., Meiresonne, T., De Kimpe, N., Mangelinckx, S. Synthesis and reactivity of 2-(carboxymethyl) aziridine derivatives. Chemical Reviews. 114 (16), 7954-8015 (2014).
  17. Ghosal, N. C., et al. Organocatalysis by an aprotic imidazolium zwitterion: Regioselective ring-opening of aziridines and applicable to gram scale synthesis. Green Chemistry. 18 (2), 565-574 (2016).
  18. Rai, V. K., Rai, P. K., Bajaj, S., Kumar, A. An unprecedented synthesis of γ-lactams via mercaptoacetylation of aziridines in water. Green Chemistry. 13 (5), 1217-1223 (2011).
  19. Srivastava, V. P., Yadav, L. D. S. The first example of ring expansion of N-tosylaziridines to 2-aroyl-N-tosylazetidines with nitrogen ylides in an aqueous medium. Green Chemistry. 12 (8), 1460-1465 (2010).
  20. Stanković, S., et al. Regioselectivity in the ring opening of non-activated aziridines. Chemical Society Reviews. 41 (2), 643-665 (2012).
  21. Ha, H. J., Jung, J. H., Lee, W. K. Application of regio-and stereoselective functional group transformations of chiral aziridine-2-carboxylates. Asian Journal of Organic Chemistry. 3 (10), 1020-1035 (2014).
  22. D’hooghe, M., Ha, H. -. J. . Synthesis of 4- to 7-membered Heterocycles by Ring Expansion: Aza-, Oxa- and Thiaheterocyclic Small-Ring Systems. 1st ed. , (2016).
  23. Macha, L., Ha, H. -. J. Total synthesis and absolute stereochemical assignment of microgrewiapine A and its stereoisomers. Journal of Organic Chemistry. 84 (1), 94-103 (2019).
  24. Srivastava, N., Macha, L., Ha, H. -. J. Total synthesis and stereochemical revision of biemamides B and D. Organic Letters. 21 (22), 8992-8996 (2019).
  25. Lee, W. K., Ha, H. -. J. Highlights of the chemistry of enantiomerically pure aziridine-2-carboxylates. Aldrichimica Acta. 36 (2), 57-63 (2003).
  26. Głowacka, I. E., Trocha, A., Wróblewski, A. E., Piotrowska, D. G. N-(1-Phenylethyl) aziridine-2-carboxylate esters in the synthesis of biologically relevant compounds. Beilstein Journal of Organic Chemistry. 15 (1), 1722-1757 (2019).
  27. JoVE. Organic Chemistry II. Polarimeter. JoVE Science Education Database. , (2022).
  28. Mao, H., et al. Preparation of chiral contiguous epoxyaziridines and their regioselective ring-opening for drug syntheses. Chemistry-A European Journal. 24 (10), 2370-2374 (2018).
  29. Vesely, J., Ibrahem, I., Zhao, G. L., Rios, R., Córdova, A. Organocatalytic enantioselective aziridination of α,β-unsaturated aldehydes. Angewandte Chemie International Edition. 11 (46), 778-781 (2007).
  30. Arai, H., et al. Enantioselective aziridination reaction of α,β-unsaturated aldehydes using an organocatalyst and tert-butyl N-arenesulfonyloxycarbamates. Tetrahedron Letters. 50 (26), 3329-3332 (2009).
  31. Desmarchelier, A., et al. Organocatalyzed aziridination of α-branched enals: enantioselective synthesis of aziridines with a quaternary stereocenter. European Journal of Organic Chemistry. 20 (2011), 4046-4052 (2011).
  32. Jiang, H., Halskov, K. S., Johansen, T. K., Jørgensen, K. A. Deracemization of axially chiral α,β-unsaturated aldehydes through an amino-catalyzed symmetry-making-symmetry-breaking cascade. Chemistry-A European Journal. 17 (14), 3842-3846 (2011).
  33. Deiana, L., et al. Catalytic asymmetric aziridination of α,β-unsaturated aldehydes. Chemistry-A European Journal. 17 (28), 7904-7917 (2011).
  34. Molnár, I. G., Tanzer, E. M., Daniliuc, C., Gilmour, R. Enantioselective aziridination of cyclic enals facilitated by the fluorine-iminium Ion gauche effect. Chemistry-A European Journal. 20 (3), 794-800 (2014).
  35. Nemoto, T., et al. Enantioselective synthesis of (R)-Sumanirole using organocatalytic asymmetric aziridination of an α,β-unsaturated aldehyde. Tetrahedron: Asymmetry. 25 (15), 1133-1137 (2014).
  36. Sim, T. B., et al. A novel synthesis of 5-functionalized oxazolidin-2-ones from enantiomerically pure 2-substituted N-[(R)-(+)-α-methylbenzyl] aziridines. Journal of Organic Chemistry. 68 (1), 104-108 (2003).
  37. Silva, M. A., Goodman, J. M. Aziridinium ring opening: a simple ionic reaction pathway with sequential transition states. Tetrahedron Letters. 46 (12), 2067-2069 (2005).
  38. Yun, S. Y., et al. Nucleophile-dependent regioselective ring opening of 2-substituted N,N-dibenzylaziridinium ions: bromide versus hydride. Chemical Communications. (18), 2508-2510 (2009).
  39. Dolfen, J., et al. Bicyclic aziridinium ions in azaheterocyclic chemistry-preparation and synthetic application of 1-azoniabicyclo [n. 1.0] alkanes. Advanced Synthesis & Catalysis. 358 (22), 3485-3511 (2016).
  40. D’hooghe, M., et al. Systematic study of halide-induced ring opening of 2-substituted aziridinium salts and theoretical rationalization of the reaction pathways. European Journal of Organic Chemistry. 2010 (25), 4920-4931 (2010).
  41. Boydas, E. B., et al. Theoretical insight into the regioselective ring-expansions of bicyclic aziridinium ions. Organic & Biomolecular Chemistry. 16 (5), 796-806 (2018).
  42. Lee, B. K., et al. An efficient synthesis of chiral terminal 1, 2-diamines using an enantiomerically pure [1-(1′ R)-methylbenzyl] aziridine-2-yl] methanol. Tetrahedron. 62 (35), 8393-8397 (2006).
  43. Ha, H. J., et al. Addition of 1-Boc-2-tert-butyldimethylsilyloxypyrrole to N-methyleneamine equivalents: synthesis of 1-Boc-5-aminomehtyl-2,5-dihydropyrrole-2-ones and 1-Boc-2-oxo-1,7,9-triazaspiro[4,5]-dec-3-ene. Heterocycles. 50 (1), 203-214 (1999).
  44. Laughlin, R. G. The basicity of aliphatic sulfonamides. Journal of the American Chemical Society. 89 (17), 4268-4271 (1967).
  45. Moreira, J. A., Rosa da Costa, A. M., García-Río, L., Pessêgo, M. Equilibrium constants and protonation site for N-methylbenzenesulfonamides. Beilstein Journal of Organic Chemistry. 7 (1), 1732-1738 (2011).
  46. Song, K., et al. Highly active ruthenium metathesis catalysts enabling ring-opening metathesis polymerization of cyclopentadiene at low temperatures. Nature Communications. 10, 3860 (2019).
  47. Fukuta, Y., et al. De novo synthesis of Tamiflu via a catalytic asymmetric ring-opening of meso-aziridines with TMSN3. Journal of the American Chemical Society. 128 (19), 6312-6313 (2006).
  48. Jiang, H., et al. Intramolecular radical aziridination of allylic sulfamoyl azides by cobalt (II)-based metalloradical catalysis: effective construction of strained heterobicyclic structures. Angewandte Chemie International Edition. 55 (38), 11604-11608 (2016).
  49. Righi, G., Bovicelli, P., Barontini, M., Tirotta, I. Dimethyl carbonate in the regio-and stereocontrolled opening of three-membered heterocyclic rings. Green Chemistry. 14 (2), 495-502 (2012).
  50. Righi, P., et al. Solution- and solid-phase synthesis of 4-hydroxy-4,5-dihydroisoxazole derivatives from enantiomerically pure N-tosyl-2,3-aziridine alcohols. Organic Letters. 4 (4), 497-500 (2002).
  51. Yadav, N. N., Choi, J., Ha, H. -. J. One-pot multiple reactions: asymmetric synthesis of 2, 6-cis-disubstituted piperidine alkaloids from chiral aziridine. Organic & Biomolecular Chemistry. 14 (27), 6426-6434 (2016).
  52. Rhee, H. J., et al. Preparation and utilization of contiguous bisaziridines as chiral building blocks. Advanced Synthesis & Catalysis. 363 (13), 3250-3257 (2021).
check_url/it/64019?article_type=t

Play Video

Citazione di questo articolo
Lee, Y., Byeon, H., Ha, H., Yang, J. W. Preparation of Contiguous Bisaziridines for Regioselective Ring-Opening Reactions. J. Vis. Exp. (185), e64019, doi:10.3791/64019 (2022).

View Video