Summary

在实验室条件下收集和长期维护切叶蚁(Atta

Published: August 30, 2022
doi:

Summary

在这里,描述了一种在实验室条件下成功收集和维持健康的 Atta (膜翅目:Formicidae)蚁群的方案。此外,还详细介绍了不同的巢穴类型和配置以及可能的实验程序。

Abstract

蚂蚁是地球上生物多样性最丰富的动物群体之一,栖息在不同的环境中。在受控环境中维持蚁群可以丰富对其生物学的理解,从而有助于应用研究。这种做法通常用于造成经济损失的物种(如 阿塔 蚂蚁)的种群控制研究。为了培养它们的互利真菌,这些切叶蚁收集叶子,因此被认为是广泛分布在整个美洲大陆的农业害虫。它们是高度社会化的,栖息在由各种房间组成的精心制作的地下巢穴中。它们在受控环境中的维护取决于此处描述的几种程序和频繁护理的日常工作。它从在繁殖季节(即婚礼飞行)收集蜂王开始,然后将其单独转移到塑料容器中。由于蜂王的死亡率很高,第二次收集可以在婚礼飞行后约6个月进行,届时挖掘出具有发达真菌团的早期巢穴,手工采摘并放置在塑料容器中。在实验室中,每天将叶子提供给已建立的菌落,每周将蚂蚁产生的废物与剩余的干燥植物材料一起清除。随着真菌园的不断生长,菌落根据实验目的转移到不同类型的容器中。切叶蚁群被放置在相互连接的容器中,代表组织系统,其功能室由自然界中的这些昆虫建造。此设置非常适合监控废物量、真菌花园健康以及工人和蜂王的行为等因素。促进数据收集和更详细的观察被认为是将蚁群保持在受控条件下的最大优势。

Introduction

蚂蚁由对大多数陆地环境产生影响的多样化个体组成1.它们充当高效的分散者234,捕食者5和生态系统工程师678910突出了它们对自然生态系统的重要性和生态成功。所有蚂蚁物种都被归类为真社会昆虫;然而,它们的社会组织在不同物种群体之间差异很大,即分工系统、功能群体、个体之间的交流、牧草组织、菌落基础和繁殖过程11。作为一个高度多元化的群体,他们求助于多种食物资源和专门的喂养行为。事实上,农业不仅是人类文明的一大步,也是蚂蚁物种的一大步。大约 55 至 65 Ma 前12,蚂蚁开始培养真菌并将它们纳入几乎排他性的饮食中。他们变得如此专业化,以至于他们发展出严格、依赖和强制性的互动,被归类为共生,其中一个个体没有另一个个体就无法生存。

低等真菌生长的蚂蚁收集和处理死亡的有机物,例如腐烂的叶子碎片,以培养它们的互利真菌;而高等真菌生长的蚂蚁收获新鲜的植物材料,构成了最成功的共生自然系统之一13。这种高度专业化的农业技术使他们能够抓住一个新的利基市场。高等蚂蚁包括切叶蚁,这是一个单系群,在19Ma(15-24Ma)和18Ma(14-22Ma)之间引起1415,16由四个有效属组成:Atta Fabricius,Acromyrmex MayrAmoimyrmex Cristiano和Pseudoatta Gallardo。由切叶蚁执行的切叶农业系统是从衍生的农业系统演变而来的17.这些物种中的大多数专门利用互惠真菌物种Leucoagaricus gongylophorus Singer 18(也称为Leucocoprinus gongylophorus Heim 19),标志着一个显着的进化转变11真菌品种垂直传播,从原始巢到后代,表明它们是克隆繁殖的20

值得注意的是, 阿塔 社会发展了一个复杂的组织结构,其环境非常重要,并且引起了myrmecologists的极大兴趣。他们的人口可以由数百万人组成,其中大多数是不育的女工,表现出明显的多态性,即不同的大小和解剖形态。种群根据年龄、生理状态、形态类型、行为和殖民地的专门活动按种姓区分21.工人可能被区分为园丁和护士、巢内通才、觅食者和挖掘者以及捍卫者或士兵21.这种组织允许合作执行任务,以及可以产生高度结构化的集体行为的自组织系统,使他们能够有效地对环境干扰做出反应22.

人口更新的作用由单个女王(即一夫一妻制)扮演,只要她活着,就构成了永久的生殖种姓22.众所周知,阿塔女王的寿命超过20年,在其一生中产卵23。由于女王是不可替代的,它的耐力对于殖民地13202324的生存至关重要。然而,在繁殖季节,巢中可以找到数千只有翅膀的繁殖雌性和雄性,但没有一只留在原来的巢中,形成了一个临时种姓22。在Atta sexdens殖民地,产生了近3,000只生殖雌性和14,000只生殖雄性25。它发生在一个菌落达到性成熟时,大约在实施后38个月,并且每年重复一次,直到它被消灭2325。新的阿塔殖民地是通过单倍体建立的,其中一个女王开始一个新的巢穴。

当环境条件有利时,繁殖者离开地下巢穴开始婚礼飞行。其发生时间因地区而异,根据物种的不同,整个巴西领土全年都在变化。然而,该事件之前似乎有降雨和湿度升高26,这可能与土壤湿度22导致的挖掘便利有关。通常,在婚前1-5周,巢穴入口和通道被拓宽,以方便生殖个体离开。在离开它们的母群之前,有翅膀的雌性在颊下腔中收集并储存一部分互助真菌2027。在飞行途中进行多次交配,并计算出在某些物种中,一个女王可以被三到八只雄性(即一妻多夫制)授精28,确保遗传变异性29。之后,蜂王进入土壤,优先考虑没有或很少植被的地方25,在那里它们移除翅膀并挖掘它们的第一个巢室。这是唯一可以在巢穴外看到女王的时期。虽然在人工巢中看到了临时种姓的个体,但尚不清楚在实验室条件下是否进行了任何成功的交配(即婚礼飞行)24

最初的筑巢对应于殖民地最关键的时期,可以持续6小时到8小时2325。这时,女王在最初的房间里隐居,几天后,产卵开始了。第一批卵被喂给蜂王反刍的菌丝体,标志着殖民地真菌花园的开始。第一只幼虫大约在 25 天22 出现,几乎在第一个月末,菌落由一个增殖真菌垫组成,未成熟的真菌(卵、幼虫和蛹)嵌套在那里,以及女王,她孤立地抚养她最初的后代23。卵也是第一批幼虫的食物资源,被蜂王高度消耗13.此外,女王通过脂肪身体储备和分解代谢不再使用的翅膀肌肉来维持自己13.最初的真菌培养物不会被消耗,因为菌落的生存取决于其发育,在此期间,蜂王用粪液使其受精13。出巢几天后,第一批工人打开巢穴入口,开始在巢穴附近区域进行觅食活动13.他们将收集的材料作为真菌花园的基质,现在作为工人的食物1322。在加入真菌培养物之前,将工人携带的植物材料切成小块并用粪便液体润湿13。蚂蚁操纵真菌接种物来增加和控制其生长,这将用于分隔大土壤挖掘室,专门用于调理花园132225

婚后约6个月, A. sexdens 巢包含一个真菌室和几个通道。切叶蚁巢的建设具有很大的专业化作用,可以作为抵御天敌和不利环境因素的防御机制22.众所周知,切叶蚁会在真菌花园中破碎,并在房间开始变干时将其转移到高湿度的房间中13。因此,尽管挖掘巢穴具有相当大的能源成本,但投入的能量在殖民地本身的利益中被逆转了22。除了少数例外, 阿塔 物种还为殖民地的废物制作专门的房间,主要由耗尽的真菌基质和死蚂蚁的尸体制成,将其与巢穴的其余部分隔离开来,并建立了重要的社会免疫策略30。此外,一组不同的工人直接操纵垃圾,以避免污染其他人。工人们不断觅食以培育真菌,这是菌落的主要营养资源。然而,它们也可以在切割碎片时以植物汁液为食。植物材料经过精心挑选用于真菌园维护,并受到许多因素的影响,例如叶片性状和生态系统的特性13

切叶蚁获取新鲜材料的觅食策略非常复杂,再加上已建立的殖民地的高收获需求,给农业生产者造成了相当大的经济损失,并危及森林恢复区2231。因此,这些蚂蚁在可能遇到的大多数地区都可以归类为害虫,范围从美国南部到阿根廷东北部11132232由于这些昆虫生物学中固有的一系列适应性(即社会组织、觅食、真菌栽培、卫生和复杂的巢穴结构)33,因此消灭有问题的菌落具有挑战性33。因此,种群控制策略不同于通常应用于其他害虫的策略,主要诉诸有吸引力的受污染诱饵产品3334。然而,由于这些蚂蚁可以拒绝对真菌和群体个体的有害物质,并损害耕地33,因此不断测试新的天然化合物和控制替代品33,3536由于很难在经过现场测试的菌落上监测实验结果,因此初步论文是在受控环境中进行的。

因此,考虑到蚂蚁的异质生活方式,支持物种水平的研究,并将群体视为操作单位,其中一只蚂蚁是复杂超有机体的元素,实验方案必须适应感兴趣的群体11。到目前为止收集的有关 Atta 属的报告使得在实验室条件下成功收集和维持菌落并承认其基本需求和一般功能成为可能。基于它们的繁殖、群体建立和摄食行为等自然过程,已经开发出一种常规的做法,允许在不同类型的巢穴中长期建立群体。在这里,描述了在实验室中维持切叶蚁的程序协议,并强调了可能的一般研究,具有不同的实验目的和科学推广。

Protocol

1. 皇后收藏 在文献中搜索感兴趣地区的阿塔繁殖季节。繁殖季节的发生、频率和日间时间因地区气候条件而异(表1)。虽然它通常在春季进行,但必须针对打算进行收集的位置收集此信息37,38,39,40,41,42,43,44,45<sup…

Representative Results

描述蚂蚁收集过程的流程图如图 6 所示。这里显示了使用上述收集、维护和巢穴设置协议获得的一些结果。 图6:采摘切叶蚁群的流程图。按照协议,第一次收集在婚礼飞行后立即进行。取下翅膀的蜂王被收集起来,放在?…

Discussion

这里描述的维持切叶蚁群的协议已经以自信和可复制的方式开发和应用了三十多年。它允许开展受现场条件限制的研究。因此,健康的蚂蚁和蚁群可用于多个领域的研究,例如个体和群体水平的比较形态学,毒理学51,52,组织学53和微生物学545556它们在实验?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

献给马里奥·奥托里(纪念) 和沃尔特·雨果·德·安德拉德·库尼亚,他们对切叶蚂蚁研究做出了巨大贡献。我们感谢圣保罗州立大学和生物科学研究所的支持。这项研究的部分资金来自巴西高级国家财政代码001、国家公民和技术发展委员会、圣保罗国家宪法权利保障基金和联合国国家发展基金会。

Materials

Entomologic forceps N/A N/A N/A
Glass tank N/A N/A Tempered glass, custom made
Hose N/A N/A Transparent, PVC 1/2 Inch x 2,0 mm
Latex gloves Descarpack 550301 N/A
Nitrile gloves Descarpack 433301 N/A
Open arena N/A N/A Polypropylene crate
Plaster pouder N/A N/A Plaster pouder used in construction, must be absorbant
Plastic Containers for collection Prafesta Natural Cód.: 8231/Natural Cód.: 8262 Lidded, transparent , polypropylene
Plastic containers for nests Prafesta Discontinued Polystyrene, hermetic
Teflon Dupont N/A Polytetrafluoroethylene liquid (PTFE Dispertion 30)

Riferimenti

  1. Wilson, E. O. . The Insect Societies. , (1971).
  2. Ortiz, D. P., Elizalde, L., Pirk, G. I. Role of ants as dispersers of native and exotic seeds in an understudied dryland. Ecological Entomology. 46 (3), 626-636 (2021).
  3. Christianini, A. V., Oliveira, P. S. Birds and ants provide complementary seed dispersal in a neotropical savanna. Journal of Ecology. 98 (3), 573-582 (2010).
  4. Camargo, P. H. S. A., Martins, M. M., Feitosa, R. M., Christianini, A. V. Bird and ant synergy increases the seed dispersal effectiveness of an ornithochoric shrub. Oecologia. 181 (2), 507-518 (2016).
  5. Sanders, D., van Veen, F. J. F. Ecosystem engineering and predation: the multi-trophic impact of two ant species. Journal of Animal Ecology. 80 (3), 569-576 (2011).
  6. Swanson, A. C., et al. Welcome to the Atta world: A framework for understanding the effects of leaf-cutter ants on ecosystem functions. Functional Ecology. 33 (8), 1386-1399 (2019).
  7. Meyer, S. T., et al. Leaf-cutting ants as ecosystem engineers: topsoil and perturbations around Atta cephalotes nests reduce nutrient availability. Ecological Entomology. 38 (5), 497-504 (2013).
  8. Sosa, B., Brazeiro, A. Positive ecosystem engineering effects of the ant Atta vollenweideri on the shrub Grabowskia duplicata. Journal of Vegetation Science. 21 (3), 597-605 (2010).
  9. De Almeida, T., et al. Above- and below-ground effects of an ecosystem engineer ant in Mediterranean dry grasslands. Proceedings of the Royal Society B: Biological Sciences. 287 (1935), 20201840 (2020).
  10. Folgarait, P. J. Ant biodiversity and its relationship to ecosystem functioning: a review. Biodiversity & Conservation. 7 (9), 1221-1244 (1998).
  11. Hölldobler, B., Wilson, E. O. . The Ants. , (1990).
  12. Barrera, C. A., Sosa-Calvo, J., Schultz, T. R., Rabeling, C., Bacci, M. Phylogenomic reconstruction reveals new insights into the evolution and biogeography of Atta leaf-cutting ants (Hymenoptera: Formicidae). Systematic Entomology. 47 (1), 13-35 (2021).
  13. Hölldobler, B., Wilson, E. O. . The Leafcutter Ants: Civilization By Instinct. , (2011).
  14. Branstetter, M. G., et al. Dry habitats were crucibles of domestication in the evolution of agriculture in ants. Proceedings of the Royal Society B: Biological Sciences. 284 (1852), 20170095 (2017).
  15. Solomon, S. E., et al. The molecular phylogenetics of Trachymyrmex Forel ants and their fungal cultivars provide insights into the origin and coevolutionary history of ‘higher-attine’ ant agriculture. Systematic Entomology. 44 (4), 939-956 (2019).
  16. Cristiano, M. P., Cardoso, D. C., Sandoval-Gómez, V. E., Simões-Gomes, F. C. Amoimyrmex Cristiano, Cardoso & Sandoval, gen. nov. (Hymenoptera: Formicidae): a new genus of leaf-cutting ants revealed by multilocus molecular phylogenetic and morphological analyses. Austral Entomology. 59 (4), 643-676 (2020).
  17. Schultz, T. R., Brady, S. G. Major evolutionary transitions in ant agriculture. Proceedings of the National Academy of Sciences of the United States of America. 105 (14), 5435-5440 (2008).
  18. Mueller, U. G., et al. Phylogenetic patterns of ant–fungus associations indicate that farming strategies, not only a superior fungal cultivar, explain the ecological success of leafcutter ants. Molecular Ecology. 27 (10), 2414-2434 (2018).
  19. Mueller, U. G., et al. Biogeography of mutualistic fungi cultivated by leafcutter ants. Molecular Ecology. 26 (24), 6921-6937 (2017).
  20. Weber, N. A. The fungus-culturing behavior of ants. American Zoologist. 12 (3), 577-587 (1972).
  21. Wilson, E. O. Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta). Behavioral Ecology and Sociobiology. 7 (2), 157-165 (1980).
  22. Della Lucia, T. M. C. Formigas cortadeiras: da bioecologia ao manejo. Viçosa Editora UFV. 421, (2011).
  23. Autuori, M. Contribuição para o conhecimento da saúva (Atta spp). I. Evolução do sauveiro (Atta sex dens rubolpilosa Forel, 1908). Arquivos do Instituto Biologico Saul Paulo. 12, 197-228 (1941).
  24. Bueno, O. C., Hebling, M. J. A., Schneider, M. O., Pagnocca, F. C. Ocorrência de formas aladas de Atta sexdens rubropilosa Forel (Hymenoptera: Formicidae) em colônias de laboratório. Neotropical Entomology. 31 (3), 469-473 (2002).
  25. Mariconi, F. A. M. Biologo. As Saúvas. , (2021).
  26. Bento, J. M. S. . Condições climáticas para o vôo nupcial e reconhecimento dos indivíduos em Atta sexdens rubropilosa (Hymenoptera: Formicidae). , (1993).
  27. Little, A. E. F., Murakami, T., Mueller, U. G., Currie, C. R. The infrabuccal pellet piles of fungus-growing ants. Naturwissenschaften. 90 (12), 558-562 (2003).
  28. Kerr, W. E. Acasalamento de rainhas com vários machos em duas espécies da tribo Attini. Revista Brasileira de Biologia. 21, 45-48 (1961).
  29. Kerr, W. E. Tendências evolutivas na reprodução dos himenópteros sociais. Arquivos do Museu Nacional. 52, (1962).
  30. Cremer, S., Armitage, S. A. O., Schmid-Hempel, P. Social immunity. Current Biology. 17 (16), 693-702 (2007).
  31. Hernández, J. V., Jaffé, K. Dano econômico causado por populações de formigas Atta laevigata (F. Smith) em plantações de Pinus caribaea (Mor.) e elementos para o manejo da praga. Anais da Sociedade Entomológica do Brasil. 24 (2), 287-298 (1995).
  32. Kempf, W. W. Catálogo abreviado das formigas da Região Neotropical Studia Entomologica. antbase.org. 15, 3 (1972).
  33. Della Lucia, T. M. C., Gandra, L. C., Guedes, R. N. C. Managing leaf-cutting ants: peculiarities, trends and challenges. Pest Management Science. 70 (1), 14-23 (2013).
  34. Boaretto, M. A. C., Forti, L. C. Perspectivas no controle de formigas-cortadeiras. Série Técnica IPEF. 11 (30), 31-46 (1997).
  35. Folgarait, P. J., Goffré, D. Conidiobolus lunulus, a newly discovered entomophthoralean species, pathogenic and specific to leaf-cutter ants. Journal of Invertebrate Pathology. 186, 107685 (2021).
  36. Cardoso, S. R. S., Rodrigues, A., Forti, L. C., Nagamoto, N. S. Pathogenicity of filamentous fungi towards Atta sexdens rubropilosa (Hymenoptera: Formicidae). International Journal of Tropical Insect Science. 42 (2), 1215-1223 (2022).
  37. Ichinose, K., Rinaldi, I., Forti, L. C. Winged leaf-cutting ants on nuptial flights used as transport by Attacobius spiders for dispersal. Ecological Entomology. 29 (5), 628-631 (2004).
  38. Pagnocca, F. C., Rodrigues, A., Nagamoto, N. S., Bacci, M. Yeasts and filamentous fungi carried by the gynes of leaf-cutting ants. Antonie Van Leeuwenhoek. 94 (4), 517-526 (2008).
  39. Attili-Angelis, D., et al. Novel Phialophora species from leaf-cutting ants (tribe Attini). Fungal Diversity. 65 (1), 65-75 (2014).
  40. Delabie, J. H. C., do Nascimento, I. C., Mariano, C. S. F. Estratégias de reprodução e dispersão em formigas attines, com exemplos do sul da Bahia. XIX Congresso Brasileiro de Entomologia. , 16-21 (2002).
  41. Fjerdingstad, E. J., Boomsma, J. J. Variation in size and sperm content of sexuals in the leafcutter ant Atta colombica. Insectes Sociaux. 44 (3), 209-218 (1997).
  42. Currie, C. R., Mueller, U. G., Malloch, D. The agricultural pathology of ant fungus gardens. Proceedings of the National Academy of Sciences of the United States of America. 96 (14), 7998-8002 (1999).
  43. Moser, J. C., et al. Eye size and behaviour of day-and night-flying leafcutting ant alates. Journal of Zoology. 264 (1), 69-75 (2004).
  44. Moreira, S. M., Rodrigues, A., Forti, L. C., Nagamoto, N. S. Absence of the parasite Escovopsis in fungus garden pellets carried by gynes of Atta sexdens. Sociobiology. 62 (1), 34-38 (2015).
  45. Arcuri, S. L., et al. Yeasts found on an ephemeral reproductive caste of the leaf-cutting ant Atta sexdens rubropilosa. Antonie Van Leeuwenhoek. 106 (3), 475-487 (2014).
  46. Staab, M., Kleineidam, C. J. Initiation of swarming behavior and synchronization of mating flights in the leaf-cutting ant Atta vollenweideri FOREL, 1893 (Hymenoptera: Formicidae). Myrmecol. News. 19, 93-102 (2014).
  47. Gálvez, D., Chapuisat, M. Immune priming and pathogen resistance in ant queens. Ecology and Evolution. 4 (10), 1761-1767 (2014).
  48. Baer, B., Armitage, S. A. O., Boomsma, J. J. Sperm storage induces an immunity cost in ants. Nature. 441 (7095), 872-875 (2006).
  49. Carlos, A. A. . Semioquímicos e comunicação sonora em formigas cortadeiras (Hymenoptera: Formicidae). , (2013).
  50. Veja um FORMIGUEIRO por DENTRO. Boravê Available from: https://youtu.be/sN99x_Rjf90 (2021)
  51. Ortiz, G., Vieira, A. S., Bueno, O. C. Toxicological and morphological comparative studies of insecticides action in leaf-cutting ants. International Journal of Agriculture Innovations and Research. 6 (3), 516-522 (2017).
  52. Decio, P., Silva-Zacarin, E. C. M., Bueno, F. C., Bueno, O. C. Toxicological and histopathological effects of hydramethylnon on Atta sexdens rubropilosa (Hymenoptera: Formicidae) workers. Micron. 45, 22-31 (2013).
  53. Vieira, A. S., Morgan, E. D., Drijfhout, F. P., Camargo-Mathias, M. I. Chemical composition of metapleural gland secretions of fungus-growing and non-fungus-growing ants. Journal of Chemical Ecology. 38 (10), 1289-1297 (2012).
  54. Vieira, A. S., Ramalho, M. O., Martins, C., Martins, V. G., Bueno, O. C. Microbial communities in different tissues of Atta sexdens rubropilosa leaf-cutting ants. Current Microbiology. 74 (10), 1216-1225 (2017).
  55. Ramalho, M. d. e. O., Martins, C., Morini, M. S. C., Bueno, O. C. What can the bacterial community of Atta sexdens (Linnaeus, 1758) tell us about the habitats in which this ant species evolves. Insects. 11 (6), 332 (2020).
  56. Machado, L. M., et al. Attractivity or repellence: relation between the endophytic fungi of Acalypha, Colocasia and the leaf-cutting ants—Atta sexdens. Advances in Entomology. 9 (2), 85-99 (2021).
  57. Moreira, A., Forti, L. C., Andrade, A. P., Boaretto, M. A., Lopes, J. Nest architecture of Atta laevigata (F. Smith, 1858) (Hymenoptera: Formicidae). Studies on Neotropical Fauna and Environment. 39 (2), 109-116 (2004).
  58. Della Lucia, T. M. C., Moreira, D. D. O., Oliveira, M. A., Araújo, M. S. Perda de peso de rainhas de Atta durante a fundação e o estabelecimento das colônias. Revista Brasileira de Biologia. 55 (4), 533-536 (1995).
  59. Fujihara, R. T., Camargo, R. d. a. S., Forti, L. C. Lipid and energy contents in the bodies of queens of Atta sexdens rubropilosa Forel (Hymenoptera, Formicidae): pre-and post-nuptial flight. Revista Brasileira de Entomologia. 56 (1), 73-75 (2012).
  60. da Silva Camargo, R., Forti, L. C. Queen lipid content and nest growth in the leaf cutting ant (Atta sexdens rubropilosa) (Hymenoptera: Formicidae). Journal of Natural History. 47, 65-73 (2013).
  61. Camargo, R. S., Forti, L. C., Fujihara, R. T., Roces, F. Digging effort in leaf-cutting ant queens (Atta sexdens rubropilosa) and its effects on survival and colony growth during the claustral phase. Insectes Sociaux. 58 (1), 17-22 (2011).
  62. Mota Filho, T. M. M., Garcia, R. D. M., Camargo, R. S., Stefanelli, L. E. P., Forti, L. C. Observations about founding queens (Atta sexdens) and their unusual behavior. International Journal of Agriculture Innovations and Research. 9, 352-357 (2021).
  63. Barcoto, M. O., Pedrosa, F., Bueno, O. C., Rodrigues, A. Pathogenic nature of Syncephalastrum in Atta sexdens rubropilosa fungus gardens. Pest Management Science. 73 (5), 999-1009 (2017).
  64. Silva, A., Bacci, M., Pagnocca, F. C., Bueno, O. C., Hebling, M. J. A. Production of polysaccharidases in different carbon sources by Leucoagaricus gongylophorus Möller (Singer), the symbiotic fungus of the leaf-cutting ant Atta sexdens Linnaeus. Curr. Microbiology. 53 (1), 68-71 (2006).
  65. Majoe, M., Libbrecht, R., Foitzik, S., Nehring, V. Queen loss increases worker survival in leaf-cutting ants under paraquat-induced oxidative stress. Philosophical Transactions of the Royal Society B. 376 (1823), 20190735 (2021).
  66. Della Lucia, T. M. C., Peternelli, E. F. O., Lacerda, F. G., Peternelli, L. A., Moreira, D. D. O. Colony behavior of Atta sexdens rubropilosa (Hymenoptera: Formicidae) in the absence of the queen under laboratory conditions. Behavioural Processes. 64 (1), 49-55 (2003).
  67. Sales, T. A., Toledo, A. M. O., Zimerer, A., Lopes, J. F. S. Foraging for the fungus: why do Acromyrmex subterraneus (Formicidae) queens need to forage during the nest foundation phase. Ecological Entomology. 46 (6), 1364-1372 (2021).
  68. Forti, L. C., et al. Do workers from subspecies Acromyrmex subterraneus prepare leaves and toxic baits in similar ways for their fungus garden. Neotropical Entomology. 49 (1), 12-23 (2020).
  69. Dorigo, A. S., et al. Projeto Primeiros Passos na Ciência: rompendo barreiras sociais e estreitando laços entre a comunidade acadêmica e o ensino médio público. Revista Brasileira de Extensão Universitária. 11 (1), 47-59 (2020).
check_url/it/64154?article_type=t

Play Video

Citazione di questo articolo
Nogueira, B. R., de Oliveira, A. A., da Silva, J. P., Bueno, O. C. Collection and Long-Term Maintenance of Leaf-Cutting Ants (Atta) in Laboratory Conditions. J. Vis. Exp. (186), e64154, doi:10.3791/64154 (2022).

View Video