Summary

硬骨模型日本青鳉鱼(Oryzias latipes)中的精子收集和计算机辅助精子分析

Published: October 06, 2022
doi:

Summary

本文介绍了两种从小型模式鱼青鳉鱼(Oryzias latipes)收集精子的快速有效方法,以及使用计算机辅助精子分析(CASA)可靠地评估精子质量的方案。

Abstract

日本青鳉鱼(Oryzias latipes)是一种硬骨鱼类,也是用于生态毒理学、发育、遗传学和生理学研究的新兴脊椎动物模型。青鳉鱼还广泛用于研究脊椎动物的繁殖,这是一项基本的生物学功能,因为它允许物种永存。精子质量是男性生育能力的重要指标,因此也是生殖成功的重要指标。提取精子和精子分析的技术在许多物种(包括硬骨鱼)中都有很好的记录。收集精子在较大的鱼中相对简单,但在小型模型鱼中可能更复杂,因为它们产生的精子更少并且更脆弱。因此,本文介绍了日本青鳉鱼小型模型鱼的两种精子收集方法:睾丸解剖和腹部按摩。本文表明这两种方法对青鳉鱼都是可行的,并表明随着鱼从手术中快速恢复,腹部按摩可以重复进行多次。本文还描述了一种在青鳉鱼中进行计算机辅助精子分析的协议,以客观地评估青鳉鱼精子质量的几个重要指标(活力、渐进性、运动持续时间、相对浓度)。这些程序,为这个有用的小型硬骨模型指定,将大大增强对影响脊椎动物雄性生育能力的环境,生理和遗传因素的理解。

Introduction

日本青鳉鱼是一种产卵的小型淡水硬骨鱼,原产于东亚。青鳉鱼已成为生态毒理学,发育遗传学,基因组学以及进化生物学和生理学研究的优秀脊椎动物模型系统12。与流行的斑马鱼类似,它们相对容易繁殖,并且对许多常见的鱼类疾病具有很强的抵抗力12。使用青鳉鱼作为模型有几个优点,包括生成时间短、透明胚胎12 和测序基因组3。与斑马鱼不同,青鳉鱼具有性别决定基因4以及高温(4-40°C)和盐度(欧盐碱物种)耐受性5。此外,青鳉鱼还开发了许多遗传和解剖学工具,以及协议67891011,12以促进其生物学研究。

繁殖是一项基本的生理功能,因为它允许物种永存。脊椎动物的繁殖需要无数精确协调的事件,包括雌性卵母细胞的产生和雄性精子的产生。精子是独特的细胞,通过复杂的精子发生过程产生,其中有许多检查点来保证高质量产品的交付13。配子质量因其对受精成功率和幼虫存活的影响而成为水产养殖和鱼类种群研究的重点。因此,精子质量是脊椎动物雄性生育能力的重要指标。

评估鱼精子质量的三个有用因素是活力、渐进性和寿命。活力百分比和渐进运动是精子质量的常见指标,因为渐进运动是受精成功的必要条件,并且与受精成功密切相关1415。运动的持续时间也是鱼类的一个重要指标,因为在大多数硬骨动物中,精子保持完全活动的时间不到2分钟,并且精子的轨迹通常不如哺乳动物线性15。然而,过去许多评估精子活力的研究依赖于分析精子的主观或半定量方法1516。例如,青鳉鱼的精子活力过去曾在显微镜下目视估计17。通过记录精子运动和使用成像软件合并帧并测量游泳路径和速度181920也进行了估计。这种方法通常缺乏稳健性,根据执行分析的人提供不同的结果1521

计算机辅助精子分析(CASA)最初是为哺乳动物开发的。CASA是一种快速定量的方法,通过以自动方式记录和测量速度和轨迹来评估精子质量15。在鱼类中,它已被用于不同的物种,以监测几种水污染物对精子质量的影响,用于识别有趣的祖细胞以改善亲鱼,提高冷冻保存和储存的效率,并优化受精条件15。因此,它是可靠评估不同脊椎动物物种精子质量的有力工具。然而,由于鱼类之间繁殖策略的重要多样性,硬骨鱼的精子与哺乳动物的精子以及不同鱼类的精子不同。硬骨鱼主要通过将配子释放到水中来使卵子受精,精子高度浓缩,结构相对简单,没有顶体,不像哺乳动物在内部受精,因此不必补偿水中的稀释,但必须承受更粘稠的流体14。此外,大多数鱼的精子移动迅速,但在激活后不到 2 分钟即可完全活动,尽管有几个例外1522。由于大多数鱼类的运动能力会迅速下降,因此在确定鱼类的精子分析方案时,应格外小心地考虑激活后的分析时间。

繁殖是生物学领域之一,其中硬骨和青鳉鱼被广泛用作模式生物。事实上,青鳉鱼雄性表现出有趣的生殖和社会行为,例如配偶守卫2324。此外,存在几种转基因品系来研究该物种繁殖的神经内分泌控制252627。精子采样是大型鱼类相对简单的程序,但在小型模型鱼中可能更复杂,因为它们产生的精子更少并且更脆弱。出于这个原因,大多数涉及青鳉鱼精子采样的研究通过粉碎解剖的睾丸17282930来提取milt(鱼精液)。一些研究还使用改良的腹部按摩将喷雾直接表达到活化培养基181920中;然而,使用这种方法很难可视化提取的小米的数量和颜色。在斑马鱼中,腹部按摩通常用于表达milt,其立即收集在毛细管31,3233中。该方法可以估计精子的体积,以及观察射精的颜色,这是精子质量的快速而简单的指标3233。因此,青鳉鱼缺乏清晰且描述良好的精子收集和分析方案。

因此,本文介绍了日本青鳉鱼小模式鱼的两种精子采集方法:睾丸解剖和毛细管腹部按摩。它表明这两种方法对青鳉鱼都是可行的,并且表明随着鱼从手术中快速恢复,腹部按摩可以重复进行多次。它还描述了一种用于青鳉鱼计算机辅助精子分析的协议,以可靠地测量青鳉鱼精子质量的几个重要指标(活力、渐进性、寿命和相对精子浓度)。这些程序,为这个有用的小型硬骨模型指定,将大大增强对影响脊椎动物雄性生育能力的环境,生理和遗传因素的理解。

Protocol

所有实验和动物处理均按照挪威生命科学大学(NMBU)关于实验动物福利的建议进行。实验使用在NMBU(挪威Ås)饲养的成年(6-9个月大)雄性日本青鳉鱼(Hd-rR菌株)进行。这些方法还在国家农业,食品和环境研究所(INRAE,法国雷恩)饲养的9个月大的雄性日本青鳉鱼(CAB菌株)中进行了简短测试。 1. 仪器和溶液制备 准备麻醉储备溶液(0.6%三卡因)。<…

Representative Results

获得的数据类型SCA Evolution软件的精子活力分析提供了有关运动性(活动和非活动精子的百分比)以及渐进性(进行性和非进行性精子的百分比)和速度(快速,中等和缓慢移动精子的百分比)的数据。它还结合了渐进性和速度(快速渐进,中等渐进,非渐进)。这些标签基于程序提供的精子运动的测量(图3A)和计算(图<strong class="xfig…

Discussion

渗透压是鱼精子活化的重要因素3637。一般来说,精子在睾丸中是不动的,并且在相对于海洋鱼类的具有高渗性的介质中变得活跃,对于淡水鱼而言,相对于具有低渗透性37。与血液类似,淡水鱼的精浆通常低于海洋鱼类(约300 mOsmol/kg,而400 mOsmol/kg)2237。因此,鱼精子通常在与它们生活…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作由挪威生命科学大学和美国富布赖特计划资助。作者要感谢NMBU的Anthony Peltier和Lourdes Carreon G Tan负责鱼类设施维护,以及INRAE(法国)ISC LPGP的Guillaume Gourmelin提供鱼类和实验室空间来进一步测试这些方法。

Materials

1.5 mL tubes Axygen MCT-150-C Any standard brand can be used
10 µL disposable calibrated glass micropipette and aspirator tube assembly Drummond 2-000-010
10x objective with phase contrast Nikon MRP90100
2 mL tubes Axygen MCT-200-c-s Any standard brand can be used
Blunt forceps Fine Science Tools 11000-12
Blunt smooth forceps Millipore XX6200006P
Disposable 20 micron counting chamber slide Microptic 20.2.25  Leja 2 chamber slides
Dissecting microscope Olympus SZX7 Any standard brand can be used
Fine forceps Fine Science Tools 11253-20
HBSS Sigmaaldrich H8264-1L
Holding sponge self-made
Inverted microscope Nikon Eclipse Ts2R
SCA Evolution Microptic
Small dissecting scissors Fine Science Tools 14090-09
Sodium Chloride (NaCl) Sigmaaldrich S9888
Tabletop vortex Labnet C1301B
Tricaine Sigmaaldrich A5040

Riferimenti

  1. Shima, A., Mitani, H. Medaka as a research organism: past, present and future. Mechanisms of Development. 121 (7-8), 599-604 (2004).
  2. Wittbrodt, J., Shima, A., Schartl, M. Medaka – a model organism from the far east. Nature Reviews Genetics. 3 (1), 53-64 (2001).
  3. Kasahara, M., et al. The medaka draft genome and insights into vertebrate genome evolution. Nature. 447 (7145), 714-719 (2007).
  4. Matsuda, M., et al. DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature. 417 (6888), 559-563 (2002).
  5. Sakamoto, T., Kozaka, T., Takahashi, A., Kawauchi, H., Ando, M. Medaka (Oryzias latipes) as a model for hypoosmoregulation of euryhaline fishes. Aquaculture. 193 (3-4), 347-354 (2001).
  6. Royan, M. R., et al. 3D atlas of the pituitary gland of the model fish medaka (Oryzias latipes). Frontiers in Endocrinology. 12, 719843 (2021).
  7. Fontaine, R., Hodne, K., Weltzien, F. A. Healthy brain-pituitary slices for electrophysiological investigations of pituitary cells in teleost fish. Journal of Visualized Experiments. (138), e57790 (2018).
  8. Fontaine, R., Weltzien, F. -. A. Labeling of blood vessels in the teleost brain and pituitary using cardiac perfusion with a dii-fixative. Journal of Visualized Experiments. (148), e59768 (2019).
  9. Ager-Wick, E., et al. Preparation of a high-quality primary cell culture from fish pituitaries. Journal of Visualized Experiments. (138), e58159 (2018).
  10. Porazinski, S. R., Wang, H., Furutani-Seiki, M. Microinjection of medaka embryos for use as a model genetic organism. Journal of Visualized Experiments. (46), e1937 (2010).
  11. Wiley-Blackwell. . Medaka: Biology, Management, and Experimental Protocols. , (2019).
  12. Royan, M. R., et al. Gonadectomy and blood sampling procedures in the small size teleost model japanese medaka (Oryzias latipes). Journal of Visualized Experiments. (166), e62006 (2020).
  13. Bhat, I. A., et al. Testicular development and spermatogenesis in fish: insights into molecular aspects and regulation of gene expression by different exogenous factors. Reviews in Aquaculture. 13 (4), 2142-2168 (2021).
  14. vander Horst, G., Garcia Alvarez, O., Garde, J. J., Soler, A. J., Jones, D. Status of sperm functionality assessment in wildlife species: From fish to primates. Animals. 11 (6), 1491 (2021).
  15. Kime, D. E., et al. Computer-assisted sperm analysis (CASA) as a tool for monitoring sperm quality in fish. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 130 (4), 425-433 (2001).
  16. Rurangwa, E., Kime, D. E., Ollevier, F., Nash, J. P. The measurement of sperm motility and factors affecting sperm quality in cultured fish. Aquaculture. 234 (1-4), 1-28 (2004).
  17. Yang, H., Tiersch, T. R. Sperm motility initiation and duration in a euryhaline fish, medaka (Oryzias latipes). Theriogenology. 72 (3), 386-392 (2009).
  18. Hashimoto, S., et al. Effects of ethinylestradiol on medaka (Oryzias latipes) as measured by sperm motility and fertilization success. Archives of Environmental Contamination and Toxicology. 56 (2), 253-259 (2009).
  19. Hara, Y., Strüssmann, C. A., Hashimoto, S. Assessment of short-term exposure to nonylphenol in Japanese medaka using sperm velocity and frequency of motile sperm. Archives of Environmental Contamination and Toxicology. 53 (3), 406-410 (2007).
  20. Kawana, R., Strüssmann, C. A., Hashimoto, S. Effect of p-Nonylphenol on sperm motility in Japanese medaka (Oryzias latipes). Fish Physiology and Biochemistry. 28, 213-214 (2003).
  21. Gallego, V., Herranz-Jusdado, J. G., Rozenfeld, C., Pérez, L., Asturiano, J. F. Subjective and objective assessment of fish sperm motility: when the technique and technicians matter. Fish Physiology and Biochemistry. 44 (6), 1457-1467 (2018).
  22. Browne, R. K., et al. Sperm motility of externally fertilizing fish and amphibians. Theriogenology. 83 (1), 1-13 (2015).
  23. Arias Padilla, L. F., et al. Cystic proliferation of germline stem cells is necessary to reproductive success and normal mating behavior in medaka. eLife. 10, 62757 (2021).
  24. Okuyama, T., Yokoi, S., Takeuchi, H. Molecular basis of social competence in medaka fish. Development, Growth, and Differentiation. 59 (4), 211-218 (2017).
  25. Okubo, K., et al. Forebrain Gonadotropin-releasing hormone neuronal development: Insights from transgenic medaka and the relevance to X-linked Kallmann syndrome. Endocrinology. 147 (3), 1076-1084 (2006).
  26. Hodne, K., Fontaine, R., Ager-Wick, E., Weltzien, F. A. Gnrh1-induced responses are indirect in female Medaka Fsh cells, generated through cellular networks. Endocrinology. 160 (12), 3018-3032 (2019).
  27. Karigo, T., et al. Whole brain-pituitary in vitro preparation of the transgenic Medaka (Oryzias latipes) as a tool for analyzing the differential regulatory mechanisms of LH and FSH release. Endocrinology. 155 (2), 536-547 (2014).
  28. Kowalska, A., Kowalski, R., Zakęś, Z. The effect of selective cyclooxygenase (COX) inhibitors on japanese medaka (Oryzias latipes) reproduction parameters. World Academy of Science, Engineering and Technology. 77, 19-23 (2011).
  29. Kowalska, A., Siwicki, A. K., Kowalski, R. K. Dietary resveratrol improves immunity but reduces reproduction of broodstock medaka Oryzias latipes (Temminck & Schlegel). Fish Physiology and Biochemistry. 43 (1), 27-37 (2007).
  30. Tan, E., Yang, H., Tiersch, T. R. Determination of sperm concentration for small-bodied biomedical model fishes by use of microspectrophotometry. Zebrafish. 7 (2), 233-240 (2010).
  31. Harvey, B., Kelley, R. N., Ashwood-Smith, M. J. Cryopreservation of zebra fish spermatozoa using methanol. Canadian Journal of Zoology. 60 (8), 1867-1870 (1982).
  32. Wasden, M. B., Roberts, R. L., DeLaurier, A. Optimizing sperm collection procedures in Zebrafish. Journal of the South Carolina Academy of Science. 15 (2), 7 (2017).
  33. Draper, B. W., Moens, C. B. A High-throughput method for Zebrafish sperm cryopreservation and in vitro fertilization. Journal of Visualized Experiments. (29), e1395 (2009).
  34. Castellini, C., Dal Bosco, A., Ruggeri, S., Collodel, G. What is the best frame rate for evaluation of sperm motility in different species by computer-assisted sperm analysis. Fertility and Sterility. 96 (1), 24-27 (2011).
  35. Acosta, I. B., et al. Effects of exposure to cadmium in sperm cells of zebrafish, Danio rerio. Toxicology Reports. 3, 696-700 (2016).
  36. Wilson-Leedy, J. G., Kanuga, M. K., Ingermann, R. L. Influence of osmolality and ions on the activation and characteristics of zebrafish sperm motility. Theriogenology. 71 (7), 1054-1062 (2009).
  37. Alavi, S. M. H., Cosson, J. Sperm motility in fishes. (II) Effects of ions and osmolality: A review. Cell Biology International. 30 (1), 1-14 (2006).
  38. Kowalska, A., Kamaszews ki, M., Czarnowska-Kujawska, M., Podlasz, P., Kowalski, R. K. Dietary ARA improves COX activity in broodstock and offspring survival fitness of a model organism (Medaka Oryzias latipes). Animals. 10 (11), 2174 (2020).
  39. Inoue, K., Takei, Y. Asian medaka fishes offer new models for studying mechanisms of seawater adaptation. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 136 (4), 635-645 (2003).
  40. Zadmajid, V., Myers, J. N., Sørensen, S. R., Ernest Butts, I. A. Ovarian fluid and its impacts on spermatozoa performance in fish: A review. Theriogenology. 132, 144-152 (2019).
  41. Poli, F., Immler, S., Gasparini, C. Effects of ovarian fluid on sperm traits and its implications for cryptic female choice in zebrafish. Behavioral Ecology. 30 (5), 1298-1305 (2019).
  42. Cosson, J., Groison, A. L., Suquet, M., Fauvel, C., Dreanno, C., Billard, R. Studying sperm motility in marine fish: An overview on the state of the art. Journal of Applied Ichthyology. 24 (4), 460-486 (2008).
  43. Beirão, J., Soares, F., Herráez, M. P., Dinis, M. T., Cabrita, E. Sperm quality evaluation in Solea senegalensis during the reproductive season at cellular level. Theriogenology. 72 (9), 1251-1261 (2009).
  44. Beirão, J., et al. Sperm handling in aquatic animals for artificial reproduction. Theriogenology. 133, 161-178 (2019).
  45. Yang, H., Tiersch, T. R. Current status of sperm cryopreservation in biomedical research fish models: Zebrafish, medaka, and Xiphophorus. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 149 (2), 224-232 (2009).
  46. Yang, H., Tiersch, T. R. Sperm cryopreservation in biomedical research fish models. Cryopreservation in Aquatic Species. 2, 439-454 (2011).
  47. Viveiros, A., Fessehaye, Y., ter Veld, M., Schulz, R., Komen, H. Hand-stripping of semen and semen quality after maturational hormone treatments, in African catfish Clarias gariepinus. Aquaculture. 213 (1-4), 373-386 (2002).
  48. Ransom, D. G., Zon, L. I. Appendix 3 collection, storage, and use of Zebrafish sperm. Methods in Cell Biology. 60, 365-372 (1998).
  49. Cosson, J. Frenetic activation of fish spermatozoa flagella entails short-term motility, portending their precocious decadence. Journal of Fish Biology. 76 (1), 240-279 (2010).
  50. Kowalski, R. K., Cejko, B. I. Sperm quality in fish: Determinants and affecting factors. Theriogenology. 135, 94-108 (2019).
check_url/it/64326?article_type=t

Play Video

Citazione di questo articolo
Closs, L., Sayyari, A., Fontaine, R. Sperm Collection and Computer-Assisted Sperm Analysis in the Teleost Model Japanese Medaka (Oryzias latipes). J. Vis. Exp. (188), e64326, doi:10.3791/64326 (2022).

View Video