Summary

从小鼠子宫建立3D子宫内膜类器官

Published: January 06, 2023
doi:

Summary

该协议描述了建立小鼠子宫内膜上皮类器官以进行基因表达和组织学分析的方法。

Abstract

子宫内膜组织排列在子宫内腔,并受到雌激素和孕激素的周期性控制。它是一种由管腔和腺体上皮、基质隔室、血管网络和复杂免疫细胞群组成的组织。小鼠模型一直是研究子宫内膜的有力工具,揭示了控制植入、胎盘和癌症的关键机制。3D子宫内膜类器官培养的最新发展提供了一个最先进的模型来剖析子宫内膜生物学的信号通路。从基因工程小鼠模型中建立子宫内膜类器官,分析其转录组并以单细胞分辨率可视化其形态是研究子宫内膜疾病的关键工具。本文概述了建立小鼠子宫内膜上皮3D培养的方法,并描述了量化基因表达和分析类器官组织学的技术。目标是提供可用于建立、培养和研究子宫内膜上皮类器官的基因表达和形态特征的资源。

Introduction

子宫内膜 – 子宫腔的内衬粘膜组织 – 是一种独特且高度动态的组织,在女性的生殖健康中起着关键作用。在生殖寿命期间,子宫内膜有可能经历数百个增殖,分化和分解的循环,由卵巢激素 – 雌激素和孕激素的协调作用协调。对基因工程小鼠的研究揭示了支撑子宫内膜对激素反应和控制胚胎植入、基质细胞蜕膜化和怀孕的基本生物学机制1。然而,由于难以在传统的2D细胞培养物中维持未转化的原代小鼠子宫内膜组织,体研究受到限制23。子宫内膜组织培养为3D器官系统或类器官的最新进展为研究控制子宫内膜细胞再生和分化的生物学途径提供了新的机会。小鼠和人子宫内膜类器官系统已由封装在各种基质中的纯子宫内膜上皮4,5开发而人子宫内膜已培养为无支架上皮/基质共培养物67最近作为胶原封装的上皮/基质组合8 .上皮类器官培养物的生长和再生潜力得到了生长因子和小分子抑制剂的定义混合物的支持,这些生长因子和小分子抑制剂已被经验确定为最大化类器官的生长和再生459此外,冷冻和解冻子宫内膜类器官的能力允许长期储存来自小鼠和人类的子宫内膜类器官,用于未来的研究。

基因工程小鼠揭示了控制早期怀孕和蜕膜化的复杂信号通路,并已被用作妊娠丢失,子宫内膜癌和子宫内膜异位症的模型。这些遗传研究主要是通过使用在女性生殖组织中特别活跃的cre重组酶对loxP侧翼等位基因(“floxed”)的细胞特异性缺失来实现的。这些小鼠模型包括广泛使用的黄体酮受体-cre10,其在子宫内膜上皮和基质组织中具有很强的重组酶活性,乳铁蛋白i-cre,诱导成年小鼠子宫内膜上皮重组11,或Wnt7a-cre,在Müllerian衍生组织中触发上皮特异性缺失12.将基因工程小鼠模型中的子宫内膜组织培养为3D类器官为研究子宫内膜生物学提供了绝佳的机会,并促进了控制子宫内膜细胞更新和分化的生长因子和信号通路的鉴定1314。文献中描述了小鼠子宫内膜组织的分离和培养方法,并报道了使用各种酶促策略分离子宫上皮以随后培养子宫内膜上皮类器官4。虽然以前的文献为子宫内膜上皮类器官培养方案提供了关键框架4,5,6,但本文为生成,维持,处理和分析这些类器官提供了一种清晰全面的方法。这些技术的标准化对于加速妇女生殖生物学领域的进步非常重要。在这里,我们报告了一种酶促和机械纯化小鼠子宫内膜上皮组织的详细方法,用于随后在凝胶基质支架中培养子宫内膜类器官。我们还描述了凝胶基质封装的小鼠子宫内膜上皮类器官的下游组织学和分子分析方法。

Protocol

小鼠处理和实验研究是根据贝勒医学院机构动物护理和使用委员会(IACUC)批准的协议以及NIH实验动物护理和使用指南制定的指南进行的。 1.使用酶和机械方法从小鼠中分离子宫上皮 注意:本节描述了使用凝胶基质支架建立,传代,冷冻和解冻小鼠上皮子宫内膜类器官所需的步骤。先前的研究已经确定,小鼠子宫内膜类器官的最佳培养物是在?…

Representative Results

小鼠子宫内膜类器官的相衬图像我们从WT小鼠子宫内膜上皮建立了类器官,如所附方案所述(见 图1中的图表)。在对小鼠子宫内膜上皮进行酶解离后,将上皮片与子宫基质细胞机械分离,并进一步与胶原酶解离以产生单细胞悬液。如果正确执行,这种上皮和基质细胞分离方法应产生污染不超过相反细胞类型10%-15%的样品(参见 图2中的免…

Discussion

在这里,我们描述了从小鼠子宫内膜生成子宫内膜上皮类器官的方法以及常规用于其下游分析的方案。子宫内膜类器官是研究控制子宫内膜相关疾病(如子宫内膜异位症、子宫内膜癌和植入失败)的机制的有力工具。2017年发表的具有里程碑意义的研究报告了长期和可再生培养小鼠和人类上皮子宫内膜类器官的条件45。尽管类器官已被广泛用于研究其?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

我们感谢Stephanie Pangas博士和Martin M. Matzuk博士(M.M.M.)对我们手稿的批判性阅读和编辑。研究得到了 Eunice Kennedy Shriver 国家儿童健康与人类发展研究所拨款R00-HD096057(D.M.),R01-HD105800(D.M.),R01-HD032067(M.M.M.)和R01-HD110038(M.M.M.)以及NCI-P30癌症中心支持补助金(NCI-CA125123)的支持。Diana Monsivais博士持有Burroughs Wellcome Fund颁发的下一代怀孕奖。

Materials

Organoid Media Formulation
Name Company Catalog Number Final concentration
Corning Matrigel Growth Factor Reduced (GFR) Basement Membrane Matrix, *LDEV-free Corning 354230 100%
Trypsin from Bovine Pancreas Sigma Aldrich T1426-1G 1%
Advanced DMEM/F12 Life Technologies 12634010 1X
N2 supplement Life Technologies 17502048 1X
B-27™ Supplement (50X), minus vitamin A Life Technologies 12587010 1X
Primocin Invivogen ant-pm-1 100 µg/mL
N-Acetyl-L-cysteine Sigma Aldrich A9165-5G 1.25 mM
L-glutamine Life Technologies 25030024 2 mM
Nicotinamide Sigma Aldrich N0636-100G 10 nM
ALK-4, -5, -7 inhibitor, A83-01 Tocris 2939 500 nM
Recombinant human EGF Peprotech AF-100-15 50 ng/mL
Recombinant human Noggin Peprotech 120-10C 100 ng/mL
Recombinant human Rspondin-1 Peprotech 120-38 500 ng/mL
Recombinant human FGF-10 Peprotech 100-26 100 ng/mL
Recombinant human HGF Peprotech 100-39 50 ng/mL
WNT3a R&D systems 5036-WN 200 ng/mL
Other supplies and reagents
Name Company Catalog Number Final concentration
Collagenase from Clostridium histolyticum Sigma Aldrich C0130-1G 5 mg/mL
Deoxyribonuclease I from bovine pancreas Sigma Aldrich DN25-100MG 2 mg/mL
DPBS, no calcium, no magnesium ThermoFisher 14190-250 1X
HBSS, no calcium, no magnesium ThermoFisher 14170112 1X
Falcon Polystyrene Microplates (24-Well) Fisher Scientific #08-772-51
Falcon Polystyrene Microplates (12-Well) Fisher Scientific #0877229
Falcon Cell Strainers, 40 µm Fisher Scientific #08-771-1
Direct-zol RNA MiniPrep (50 µg) Genesee Scientific 11-331
Trizol reagent Invitrogen 15596026
DMEM/F-12, HEPES, no phenol red ThermoFisher 11039021
Fetal Bovine Serum, Charcoal stripped Sigma Aldrich F6765-500ML 2%
Estratiol (E2) Sigma Aldrich E1024-1G 10 nM
Formaldehyde 16% in aqueous solution, EM Grade VWR 15710 4%
Epredia Cassette 1 Slotted Tissue Cassettes Fisher Scientific 1000961
Epredia Stainless-Steel Embedding Base Molds Fisher Scientific 64-010-15 
Ethanol, 200 proof (100%) Fisher Scientific 22-032-601 
Histoclear Fisher Scientific 50-899-90147
Permount Mounting Medium Fisher Scientific 50-277-97
Epredia Nylon Biopsy Bags Fisher Scientific 6774010
HistoGel Specimen Processing Gel VWR 83009-992
Hematoxylin solution Premium VWR 95057-844
Eosin Y (yellowish) solution Premium VWR 95057-848
TBS Buffer, 20X, pH 7.4 GenDEPORT T8054 1X
TBST (10X), pH 7.4 GenDEPORT T8056 1X
Citric acid  Sigma Aldrich C0759-1KG
Sodium citrate tribasic dihydrate Sigma Aldrich S4641-500G
Tween20 Fisher Scientific BP337-500 
Bovine Serum Albumin (BSA) Sigma Aldrich A2153-100G 3%
DAPI Solution (1 mg/mL) ThermoFisher 62248 1:1000 dilution
VECTASHIELD Antifade Mounting Medium Vector Labs H-1000-10
Clear Nail Polish Fisher Scientific NC1849418
Fisherbrand Superfrost Plus Microscope Slides Fisher Scientific 22037246
VWR Micro Cover Glasses VWR 48393-106
SuperScript VILO Master Mix ThermoFisher 11755050
SYBR Green PCR Master Mix ThermoFisher 4364346
Krt8 Antibody (TROMA-I)  DSHB TROMA-I  1:50 dilution
Vimentin Antobody Cell Signaling 5741S 1:200 dilution
Donkey anti-Rat IgG (H+L) Highly Cross-Adsorbed Secondary
Antibody, Alexa Fluor 594
ThermoFisher A-21209 1:250 dilution
Donkey anti-Rabbin IgG (H+L) Highly Cross-Adsorbed Secondary
Antibody, Alexa Fluor 488
ThermoFisher A-21206 1:250 dilution
ZEISS Stemi 508 Stereo Microscope ZEISS
ZEISS Axio Vert.A1 Inverted Routine Microscope with digital camera ZEISS
Primer Sequence Forward (5'-3') Reverse (5'-3') _
Lipocalin 2 (Lcn2) GCAGGTGGTACGTTGTGGG CTCTTGTAGCTCATAGATGGTGC
Lactoferrin (Ltf) TGAGGCCCTTGGACTCTGT ACCCACTTTTCTCATCTCGTTC
Progesterone (Pgr) CCCACAGGAGTTTGTCAAGCTC TAACTTCAGACATCATTTCCGG
Glyceraldehyde 3 phosphate dehydrogenase (Gapdh) CAATGTGTCCGTCGTGGATCT GCCTGCTTCACCACCTTCTT

Riferimenti

  1. Wang, H., Dey, S. K. Roadmap to embryo implantation: clues from mouse models. Nature Reviews Genetics. 7 (3), 185-199 (2006).
  2. Hibaoui, Y., Feki, A. Organoid models of human endometrial development and disease. Frontiers in Cell and Developmental Biology. 8, 84 (2020).
  3. Rawlings, T. M., Makwana, K., Tryfonos, M., Lucas, E. S. Organoids to model the endometrium: implantation and beyond. Reproduction & Fertility. 2 (3), 85-101 (2021).
  4. Boretto, M., et al. Development of organoids from mouse and human endometrium showing endometrial epithelium physiology and long-term expandability. Development. 144 (10), 1775-1786 (2017).
  5. Turco, M. Y., et al. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nature Cell Biology. 19 (5), 568-577 (2017).
  6. Murphy, A. R., Wiwatpanit, T., Lu, Z., Davaadelger, B., Kim, J. J. Generation of multicellular human primary endometrial organoids. Journal of Visualized Experiments. (152), e60384 (2019).
  7. Wiwatpanit, T., et al. Scaffold-free endometrial organoids respond to excess androgens associated with polycystic ovarian syndrome. The Journal of Clinical Endocrinology and Metabolism. 105 (3), 769-780 (2020).
  8. Rawlings, T. M., et al. Modelling the impact of decidual senescence on embryo implantation in human endometrial assembloids. Elife. 10, 69603 (2021).
  9. Lou, L., Kong, S., Sun, Y., Zhang, Z., Wang, H. Human endometrial organoids: recent research progress and potential applications. Frontiers in Cell and Developmental Biology. 10, 844623 (2022).
  10. Soyal, S. M., et al. Cre-mediated recombination in cell lineages that express the progesterone receptor. Genesis. 41 (2), 58-66 (2005).
  11. Daikoku, T., et al. Lactoferrin-iCre: a new mouse line to study uterine epithelial gene function. Endocrinology. 155 (7), 2718-2724 (2014).
  12. Winuthayanon, W., Hewitt, S. C., Orvis, G. D., Behringer, R. R., Korach, K. S. Uterine epithelial estrogen receptor alpha is dispensable for proliferation but essential for complete biological and biochemical responses. Proceedings of the National Academy of Sciences. 107 (45), 19272-19277 (2010).
  13. Seishima, R., et al. Neonatal Wnt-dependent Lgr5 positive stem cells are essential for uterine gland development. Nature Communications. 10 (1), 5378 (2019).
  14. Syed, S. M., et al. Endometrial Axin2(+) cells drive epithelial homeostasis, regeneration, and cancer following oncogenic transformation. Cell Stem Cell. 26 (1), 64-80 (2020).
  15. Caligioni, C. S. Assessing reproductive status/stages in mice. Current Protocols in Neuroscience. , (2009).
  16. Fitzgerald, H. C., Schust, D. J., Spencer, T. E. In vitro models of the human endometrium: evolution and application for women’s health. Biology of Reproduction. 104 (2), 282-293 (2021).
  17. Hewitt, S. C., et al. Progesterone signaling in endometrial epithelial organoids. Cells. 11 (11), 1760 (2022).
  18. Sadeghipour, A., Babaheidarian, P. Making formalin-fixed, paraffin embedded blocks. Methods in Molecular Biology. 1897, 253-268 (2019).
  19. Qin, C., et al. The cutting and floating method for paraffin-embedded tissue for sectioning. Journal of Visualized Experiments. (139), e58288 (2018).
  20. Rekhtman, N., et al. Novel modification of HistoGel-based cell block preparation method: improved sufficiency for molecular studies. Archives of Pathology & Laboratory Medicine. 142 (4), 529-535 (2018).
  21. Shidham, V. B. CellBlockistry: Chemistry and art of cell-block making – A detailed review of various historical options with recent advances. Cytojournal. 16, 12 (2019).
  22. Ali, A., Syed, S. M., Tanwar, P. S. Protocol for in vitro establishment and long-term culture of mouse vaginal organoids. STAR Protocols. 1 (2), 100088 (2020).
  23. Kurihara, I., et al. COUP-TFII mediates progesterone regulation of uterine implantation by controlling ER activity. PLoS Genet. 3 (6), 102 (2007).
  24. McMaster, M. T., Teng, C. T., Dey, S. K., Andrews, G. K. Lactoferrin in the mouse uterus: analyses of the preimplantation period and regulation by ovarian steroids. Molecular Endocrinology. 6 (1), 101-111 (1992).
  25. Huang, H. L., Chu, S. T., Chen, Y. H. Ovarian steroids regulate 24p3 expression in mouse uterus during the natural estrous cycle and the preimplantation period. The Journal of Endocrinology. 162 (1), 11-19 (1999).
  26. Clevers, H. Modeling development and disease with organoids. Cell. 165 (7), 1586-1597 (2016).
  27. Bigsby, R. M., Cunha, G. R. Estrogen stimulation of deoxyribonucleic acid synthesis in uterine epithelial cells which lack estrogen receptors. Endocrinology. 119 (1), 390-396 (1986).
  28. Clementi, C., et al. Activin-like kinase 2 functions in peri-implantation uterine signaling in mice and humans. PLoS Genetics. 9 (11), 1003863 (2013).
  29. Jeong, J. W., et al. Foxa2 is essential for mouse endometrial gland development and fertility. Biology of Reproduction. 83 (3), 396-403 (2010).
  30. Song, Y., et al. Endometriotic organoids: a novel in vitro model of endometriotic lesion development. bioRxiv. , (2022).
  31. Miyazaki, K., et al. Generation of progesterone-responsive endometrial stromal fibroblasts from human induced pluripotent stem cells: role of the WNT/CTNNB1 pathway. Stem Cell Reports. 11 (5), 1136-1155 (2018).
  32. Yoshimatsu, S., Kisu, I., Qian, E., Noce, T. A new horizon in reproductive research with pluripotent stem cells: successful in vitro gametogenesis in rodents, its application to large animals, and future in vitro reconstitution of reproductive organs such as "Uteroid" and "Oviductoid&#34. Biologia. 11 (7), 987 (2022).
  33. Cheung, V. C., et al. Pluripotent stem cell-derived endometrial stromal fibroblasts in a cyclic, hormone-responsive, coculture model of human decidua. Cell Reports. 35 (7), 109138 (2021).
  34. McGowen, M. R., Erez, O., Romero, R., Wildman, D. E. The evolution of embryo implantation. The International Journal of Development Biology. 58 (2-4), 155-161 (2014).
  35. Carson, D. D., et al. Embryo implantation. Biologia dello sviluppo. 223 (2), 217-237 (2000).
  36. Li, Y., Sun, X., Dey, S. K. Entosis allows timely elimination of the luminal epithelial barrier for embryo implantation. Cell Reports. 11 (3), 358-365 (2015).
  37. Jain, V., Chodankar, R. R., Maybin, J. A., Critchley, H. O. D. Uterine bleeding: how understanding endometrial physiology underpins menstrual health. Nature Reviews Endocrinology. 18 (5), 290-308 (2022).
  38. Hayashi, K., et al. Wnt genes in the mouse uterus: potential regulation of implantation. Biology of Reproduction. 80 (5), 989-1000 (2009).
  39. Dunlap, K. A., et al. Postnatal deletion of Wnt7a inhibits uterine gland morphogenesis and compromises adult fertility in mice. Biology of Reproduction. 85 (2), 386-396 (2011).
  40. Ter Steege, E. J., Bakker, E. R. M. The role of R-spondin proteins in cancer biology. Oncogene. 40 (47), 6469-6478 (2021).
  41. Brazil, D. P., Church, R. H., Surae, S., Godson, C., Martin, F. BMP signalling: agony and antagony in the family. Trends in Cell Biology. 25 (5), 249-264 (2015).
  42. Tojo, M., et al. The ALK-5 inhibitor A-83-01 inhibits Smad signaling and epithelial-to-mesenchymal transition by transforming growth factor-beta. Cancer Science. 96 (11), 791-800 (2005).
  43. Zhang, Y., Que, J. BMP signaling in development, stem cells, and diseases of the gastrointestinal tract. Annual Review of Physiology. 82, 251-273 (2020).
  44. Plikus, M. V., et al. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature. 451 (7176), 340-344 (2008).
  45. Gurung, S., Werkmeister, J. A., Gargett, C. E. Inhibition of transforming growth factor-β receptor signaling promotes culture expansion of undifferentiated human endometrial mesenchymal stem/stromal cells. Scientific Reports. 5, 15042 (2015).
  46. Lucciola, R., et al. Impact of sustained transforming growth factor-β receptor inhibition on chromatin accessibility and gene expression in cultured human endometrial MSC. Frontiers in Cell and Developmental Biology. 8, 567610 (2020).
  47. Hernandez-Gordillo, V., et al. Fully synthetic matrices for in vitro culture of primary human intestinal enteroids and endometrial organoids. Biomaterials. 254, 120125 (2020).
  48. Gnecco, J. S., et al. Physiomimetic Models of Adenomyosis. Seminars in Reproductive Medicine. 38 (2-03), 179-196 (2020).
  49. Nikolakopoulou, K., Turco, M. Y. Investigation of infertility using endometrial organoids. Reproduction. 161 (5), 113-127 (2021).
  50. Kim, J. J. Preparing for implantation. Elife. 10, 73739 (2021).
check_url/it/64448?article_type=t

Play Video

Citazione di questo articolo
Tang, S., Parks, S. E., Liao, Z., Cope, D. I., Blutt, S. E., Monsivais, D. Establishing 3D Endometrial Organoids from the Mouse Uterus. J. Vis. Exp. (191), e64448, doi:10.3791/64448 (2023).

View Video