Summary

使用 卤虫 盐L的致死性生物测定。

Published: October 11, 2022
doi:

Summary

这项工作旨在评估和审查 卤虫 盐碱致死性生物测定程序,也称为盐水虾致死性测定。这种简单而廉价的方法提供了有关样品(即天然产物)的一般毒性(被视为初步毒性评估)的信息。

Abstract

天然产物自古以来就被用来生产药物。如今,有很多化疗药物从天然来源获得并用于治疗多种疾病。不幸的是,这些化合物中的大多数通常表现出全身毒性和不良反应。为了更好地评估所选潜在生物活性样品的耐受性,盐水虾(盐卤菌)通常用作致死率研究的模型。 A. salina 测试基于所研究的生物活性化合物在其幼虫阶段(无节幼体)杀死微甲壳类动物的能力。该方法是细胞毒性研究以及合成、半合成和天然产物的一般毒性筛选的便捷起点。与通常用于上述目的的许多其他测定(体外 细胞或酵母菌株,斑马鱼,啮齿动物)相比,它可以被认为是一种简单,快速和低成本的测定;此外,即使没有任何特定培训,也可以轻松执行。总体而言, A. salina 测定是所选化合物的初步毒性评估和天然产物提取物的生物引导分馏的有用工具。

Introduction

多年来,来自植物、动物或微生物的天然产物因其生物和药理活性的多样性而成为开发新的生物活性分子的一个日益受到关注的领域1。然而,相关的副作用、耐药性或药物的特异性不足,特别是当用作抗癌药物时,是可能导致治疗无效的主要因素12

在过去的几十年里,已经发现了几种植物来源的细胞毒性药物,其中一些被用作抗癌剂123。在这种情况下,紫杉醇被报道为最著名和最活跃的天然来源化疗药物之一34。目前,据估计,市场上超过35%的药物来源于天然产物或受天然产物启发5。这些化合物的潜在高毒性在所有研究阶段都需要考虑,因为不同类型的污染物甚至植物本身的代谢成分都会引起毒性作用。因此,应在初步阶段进行药理学和毒理学概况,以评估新的潜在植物疗法的生物活性和安全性。为了评估新的生物活性样品的毒性,无脊椎动物可以被认为是研究的最佳模型。他们要求最低的伦理要求,并允许初步的体外测定,以优先考虑最有前途的产品进行下一轮脊椎动物16测试。

盐水虾俗称盐水虾,是一种小型嗜盐无脊椎动物,属于卤虫属(蒿科,蒿目,甲壳亚门;图1)。在海洋和水生盐碱生态系统中,盐水虾起着重要的营养作用,因为它们以微藻为食,是用于喂养鱼类的浮游动物的组成部分。此外,它们的幼虫(称为无节幼体)在初步研究期间广泛用于评估一般毒性137

卤虫 属广泛用于致死性研究,也是毒性评估的方便起点,通过根据实验室中生长的无节幼体的能力跟踪潜在生物活性化合物的毒性18。出于这个原因, 盐碱A. salina 的使用在一般毒性研究中获得了吸引力,因为与动物模型9上的其他测试相比,它是一种非常有效且易于使用的方法。

由于其解剖结构简单,体积小,生命周期短,可以在一次实验中研究大量的无脊椎动物。因此,它们将遗传适应性和低成本兼容性与大规模筛查相结合1。在这种情况下,在一般毒性测定中使用盐水虾显示出几个优点,例如快速生长(从孵化到第一次结果需要28-72小时),成本效益和商业鸡蛋的长保质期,可以全年使用310。另一方面,由于无脊椎动物具有原始的器官系统并且缺乏适应性免疫系统,因此它们并不代表人类细胞的完美和可靠的模型1

但是,它为所选样品的一般毒性提供了初步评估方法。由于它被广泛用作致死性测定,它可以提供有关潜在抗癌剂毒性作用的临时指示。它还经常用于获得有关具有任何其他生物活性的化合物的一般毒性的反馈,为此必须显示 卤虫 虾中可能的最低死亡率。

在我们小组正在进行的一项研究中,来自 Plectranthus 物种的不同提取物显示出抗氧化和抗菌活性(未发表的结果)。同时,通过纯化提取物获得分离的化合物,然后进行化学修饰。然后对提取物、纯化合物和半合成衍生物进行一般毒性测试。在这种情况下,本工作旨在概述 使用卤虫 致死性生物测定法来评估来自 Plectranthus11属不同植物的生物活性提取物和分离化合物的一般毒性和潜在细胞毒性活性。

Figure 1
图1:显微镜下的 盐卤虫 在显微镜下看到的新孵化的 盐碱青节 幼体(放大倍数12倍)。 请点击此处查看此图的大图。

Protocol

1. 设备准备 获取市售孵化设备。选择合适的位置来设置孵化设备(图2A)。将漏斗形容器放在黑色支架(包含在套件中)中,然后将漏斗向合适的方向转动以查看水平标记和水龙头。 要制作手工迁移设备,请切开两个 0.5 L(直径 5.8 厘米)塑料瓶的顶部,以获得 12 厘米的最终高度。在每个瓶子底部距离底部 7 厘米处的一侧创建一个直径为 1.5 厘米…

Representative Results

我们小组最近研究的一些天然产物的一般毒性是通过盐水虾致死性生物测定法进行评估的。四种提取物(Pa- P.Pb- P. barbatus;Pc- P. cylindraceus;和Pe- P. ecklonii)来自Plectranthus属,以其抗氧化活性(未发表的结果)而闻名,进行了测试。此外,从Plectranthus属获得的两种天然化合物(1和2)和三种半合成衍生物(3,4,5;图3),在另一部作品<sup c…

Discussion

在过去的几年中,科学界对毒性筛查的替代模型的关注有所增加21。除了盐藻致死性生物测定外,通常还执行其他方法来评估样品耐受性,包括脊椎动物生物测定(例如啮齿动物),无脊椎动物(例如斑马鱼),使用酵母菌株或细胞的体外方法以及计算机方法22232425</sup…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

为了纪念阿米尔卡·罗伯托教授。

这项工作得到了科学和技术基金会(葡萄牙FCT)在UIDB/04567/2020和UIDP/04567/2020项目下的财政支持,该项目归功于CBIOS和博士资助SFRH/BD/137671/2018(Vera Isca)。

Materials

24-well plates Thermo Fisher Scientific, Denmark 174899 Thermo Scientific Nunc Up Cell 24 multidish
Aluminium foil Albal Can be purchased in supermarket
Artemio Set JBL GmbH and Co. KG, D-67141, Neuhofen Germany 61066000 Can be purchased in pet shops
Binocular microscope Ceti, Belgium  1700.0000 Flexum-24AED, 220-240 V, 50 Hz
Bottles 0.5 L Diameter: 5.8 cm; Height: 12 cm
Brine shrimp cysts JBL GmbH and Co. KG, D-67141, Neuhofen Germany 3090700 Can be purchased in pet shops
Brine shrimp salt JBL GmbH and Co. KG, D-67141, Neuhofen Germany 3090600 Can be purchased in pet shops
Dimethyl sulfoxide (DMSO) VWR chemicals CAS: 67-68-5  99% purity
Discartable tips Diamond F171500 Volume range: 100 – 1000 µL
Eppendorf microtubes BRAND 7,80,546 Microtubes, PP, 2 mL, BIO-CERT PCR QUALITY
Erlenmeyer flask VWR chemicals 4,47,109 volume: 100 mL
Glass beaker Normax 3.2111654N Volume: 1000 mL
Gloves Guantes Luna GLSP3
GraphPad Prism GraphPad Software, San Diego, CA, USA GraphPad Prism version 5.00 for Windows, www.graphpad.com, accessed on 5 February 2021; commercial statistical analysis software
Home-made A. salina Grower  -  - Home made: two plastic bottles connected by a hose
Hot glue Parkside PHP500E3 230 V, 50 Hz, 25 W
Incubator Heidolph Instruments, Denmark   - One Heidolph Unimax 1010 equipment and one Heidolph Inkubator 1006
Light Roblan SKYC3008FE14 LED light bulb
Micropipettes VWR chemicals 613-5265 Volume range: 100 – 1000 µL
Potassium dichromate (K2Cr2O7) VWR chemicals CAS: 7778-50-9  99% purity
Pump ProAir a50 JBL GmbH and Co. KG, D-67141, Neuhofen Germany  - Included in the Artemio Set+1 kit
Rubber tube 1.3 cm outer and 0.9 cm inner diameter
Stirring rod VWR chemicals 441-0147 Equation 1 6 mm, 250 mm
Termometer VWR chemicals 620-0821 0 – 100 °C

Riferimenti

  1. Ntungwe, N. E., et al. Artemia species: An important tool to screen general toxicity samples. Current Pharmaceutical Design. 26 (24), 2892-2908 (2020).
  2. Cragg, G. M., Newman, D. J. Natural products: A continuing source of novel drug leads. Biochimica et Biophysica Acta (BBA) – General Subjects. 1830 (6), 3670-3695 (2013).
  3. Ntungwe, E., et al. General toxicity screening of Royleanone derivatives using an artemia salina model. Journal Biomedical and Biopharmaceutical Research. 18 (1), 114 (2021).
  4. Seca, A., Plant Pinto, D. secondary metabolites as anticancer agents: Successes in clinical trials and therapeutic application. International Journal of Molecular Sciences. 19 (1), 263 (2018).
  5. Calixto, J. B. The role of natural products in modern drug discovery. Anais da Academia Brasileira de Ciências. 91 (3), 1-7 (2019).
  6. Mandrell, D., et al. Automated zebrafish chorion removal and single embryo placement: optimizing throughput of zebrafish developmental toxicity screens. Journal of Laboratory Automation. 17 (1), 66-74 (2012).
  7. Zhang, Y., Mu, J., Han, J., Gu, X. An improved brine shrimp larvae lethality microwell test method. Toxicology Mechanisms and Methods. 22 (1), 23-30 (2012).
  8. Domínguez-Villegas, V., et al. antioxidant and cytotoxicity activities of methanolic extract and prenylated flavanones isolated from leaves of eysehardtia platycarpa. Natural Product Communications. 8 (2), 177-180 (2013).
  9. Hamidi, M. R., Jovanova, B., Panovska, T. K. Toxicological evaluation of the plant products using Brine Shrimp (Artemia salina L.) model. Macedonian Pharmaceutical Bulletin. 60 (01), 9-18 (2014).
  10. Libralato, G., Prato, E., Migliore, L., Cicero, A. M., Manfra, L. A review of toxicity testing protocols and endpoints with Artemia spp. Ecological Indicators. 69, 35-49 (2016).
  11. Mendes Hacke, A. C., et al. Cytotoxicity of cymbopogon citratus (DC) Stapf fractions, essential oil, citral, and geraniol in human leukocytes and erythrocytes. Journal of Ethnopharmacology. 291, 115147 (2022).
  12. Thangapandi, V., Pushpanathan, T. Comparison of the Artemia salina and Artemia fransiscana bioassays for toxicity of Indian medicinal plants. Journal of Coastal Life Medicine. 2 (6), 453-457 (2014).
  13. Syahmi, A. R. M., et al. Acute oral toxicity and brine shrimp lethality of Elaeis guineensis Jacq., (Oil Palm Leaf) methanol extract. Molecules. 15 (11), 8111-8121 (2010).
  14. Sasidharan, S., et al. Acute toxicity impacts of Euphorbia hirta L extract on behavior, organs body weight index and histopathology of organs of the mice and Artemia salina. Pharmacognosy Research. 4 (3), 170 (2012).
  15. Libralato, G. The case of Artemia spp. in nanoecotoxicology. Marine Environmental Research. 101, 38-43 (2014).
  16. Okumu, M. O., et al. Artemia salina as an animal model for the preliminary evaluation of snake venom-induced toxicity. Toxicon: X. 12, 100082 (2021).
  17. Rajabi, S., Ramazani, A., Hamidi, M., Naji, T. Artemia salina as a model organism in toxicity assessment of nanoparticles. DARU Journal of Pharmaceutical Sciences. 23 (1), 20 (2015).
  18. Svensson, B. -. M., Mathiasson, L., Mårtensson, L., Bergström, S. Artemia salina as test organism for assessment of acute toxicity of leachate water from landfills. Environmental Monitoring and Assessment. 102 (1), 309-321 (2005).
  19. Banti, C., Hadjikakou, S. Evaluation of toxicity with brine shrimp assay. Bio-Protocol. 11 (2), 3895 (2021).
  20. Pecoraro, R., et al. Artemia salina: A microcrustacean to assess engineered nanoparticles toxicity. Microscopy Research and Technique. 84 (3), 531-536 (2021).
  21. Lillicrap, A., et al. Alternative approaches to vertebrate ecotoxicity tests in the 21st century: A review of developments over the last 2 decades and current status. Environmental Toxicology and Chemistry. 35 (11), 2637-2646 (2016).
  22. Ribeiro, I. C., et al. Yeasts as a model for assessing the toxicity of the fungicides Penconazol, Cymoxanil and Dichlofulanid. Chemosphere. (10), 1637-1642 (2000).
  23. Armour, C. D., Lum, P. Y. From drug to protein: using yeast genetics for high-throughput target discovery. Current Opinion in Chemical Biology. 9 (1), 20-24 (2005).
  24. Modarresi Chahardehi, A., Arsad, H., Lim, V. Zebrafish as a successful animal model for screening toxicity of medicinal plants. Plants. 9 (10), 1345 (2020).
  25. Fischer, I., Milton, C., Wallace, H. Toxicity testing is evolving. Toxicology Research. 9 (2), 67-80 (2020).
  26. de Araújo, G. L., et al. Alternative methods in toxicity testing: the current approach. Brazilian Journal of Pharmaceutical Sciences. 50 (1), 55-62 (2014).
  27. Toussaint, M., et al. A high-throughput method to measure the sensitivity of yeast cells to genotoxic agents in liquid cultures. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 606 (1), 92-105 (2006).
  28. Horzmann, K. A., Freeman, J. L. Making waves: New developments in toxicology with the zebrafish. Toxicological Sciences. 163 (1), 5-12 (2018).
  29. Avdesh, A., et al. Regular care and maintenance of a zebrafish (Danio rerio) laboratory: An introduction. Journal of Visualized Experiments. (69), e4196 (2012).
  30. Cunliffe, V. T., Nüsslein-Volhard, C., Dahm, R. . Zebrafish: A Practical Approach. , (2002).
  31. Sitarek, P., et al. Insight the biological activities of selected Abietane Diterpenes isolated from Plectranthus spp. Biomolecules. 10 (2), 194 (2020).
  32. Matias, D., et al. Cytotoxic activity of Royleanone Diterpenes from Plectranthus madagascariensis Benth. ACS Omega. 4 (5), 8094-8103 (2019).
  33. Garcia, C., et al. Royleanone derivatives from Plectranthus spp. as a novel class of P-glycoprotein inhibitors. Frontiers in Pharmacology. 11, (2020).
check_url/it/64472?article_type=t

Play Video

Citazione di questo articolo
Santos Filipe, M., Isca, V. M. S., Ntungwe N., E., Princiotto, S., Díaz-Lanza, A. M., Rijo, P. Lethality Bioassay Using Artemia salina L.. J. Vis. Exp. (188), e64472, doi:10.3791/64472 (2022).

View Video