Summary

红细胞沉降率:医学环境中的物理驱动表征

Published: March 24, 2023
doi:

Summary

红细胞沉降率(ESR)是一个物理参数,常用于常规健康检查和医学诊断。最近开发了一种理论模型,该模型允许基于现代胶体知识从整个沉降曲线中提取具有物理意义的参数。在这里,我们提出了一种协议,用于随着时间的推移自动收集ESR,并从该自动数据收集中提取该最新模型的参数。这些精炼的参数也可能改善医学证词。

Abstract

红细胞(或红细胞)沉降率(ESR)是血液的物理衍生参数,通常用于常规健康检查和医学诊断。例如,在炎症的情况下,由于纤维蛋白原和其他血浆蛋白的相关增加,观察到更高的 ESR。据信,这种增加是由于纤维蛋白原的增加导致红细胞(RBC)形成更大的聚集体。事实上,纤维蛋白原是一种促进红细胞的聚集体,在斯托克斯制度中,假设在血液较大的聚集体中更快地观察到沉淀物。然而,基于这一假设的所有ESR测量模型都需要进一步的具体物理假设,这是任何其他系统都不需要的。此外,胶体悬浮液领域的现代研究已经确定,有吸引力的颗粒形成渗透聚集体(即与容器一样宽的聚集体)。然后,这些胶体的沉降遵循所谓的“胶体凝胶崩溃”。最近,研究表明红细胞实际上遵循相同的行为。该假设还允许对红细胞的沉降曲线进行有效和分析建模,从中提取出稳健且具有物理意义的描述符。本手稿描述了如何进行这种分析,并讨论了这种方法的好处。

Introduction

红细胞沉降率(ESR)是一种医学体外临床工具,于20世纪正式引入循证医学1,234它目前在世界范围内用作非特异性炎症试验,或监测某些特定病症的演变5678这主要是由于纤维蛋白原浓度的增加,但也增加了其他血浆成分,如IgM191011根据当前的Westergren标准协议,ESR值报告为在静止时离开典型尺寸为20cm的垂直管后,在给定时间点(30分钟或1小时)测量无细胞等离子体层12。然而,这种测量方法受到批评,因为已经报道了沉降过程中的定性不同阶段,包括达到最大沉降速度13之前的延迟。这种延迟在大约一半的健康样本中持续超过1小时14。此阶段的速度与沉降的第二个较快阶段的尺度不同15.将读数限制在第一个小时内的平均沉降速度,然后比较不同个体之间各种血液特性的不同组合。

此外,最近已经证明,该协议背后的通常理论考虑是错误的161718。在生理性血细胞比联(约25%以上)时,红细胞(RBC)不会作为单独的聚集体沉降,而是作为连续的,所谓的渗透,红细胞17,18网络,遵循与通常提到的斯托克斯沉降1617不同的物理方程。已经表明,在某些新的医学环境中,考虑基于沉降(整个曲线)的时间分辨测量的物理描述更为稳健1920。此外,这些测量可用于阐明改变细胞形状改变的病理学中改变ESR的物理机制1920。此外,缓慢的 ESR 可以具有有用的医学解释,如神经棘细胞增多症综合征患者队列的测量所示1920。本文回顾了如何基于整个ESR动力学实际实现物理上有意义的参数的测量。更准确地说,这里介绍的方法提取了最大沉降速度Um,其值可以校正以考虑供体1617的血细胞比容的影响。该参数比传统的测量值16171920更准确因此更可靠。

此外,在一些基础研究中,与其监测给定患者的炎症状态,不如排除血细胞比容对 ESR 21,22,23 的影响,或研究红细胞在修饰的 ESR中的作用 19202425 在不同的捐赠者之间。比较不是直接来自患者的全血样本的样本可能是有用的。因此,在自体血浆或血浆取代基中重悬具有受控血细胞比容的红细胞可能用作 ESR 测量的第一步。例如,浓度为55 mg/mL的葡聚糖70 kDa在磷酸盐缓冲盐水(PBS)中的溶液在健康细胞的对照范围内产生沉降范围19。这份手稿还展示了应该如何进行这些步骤,并且所提出的分析在这些情况下也相关。

Protocol

血液样本采集和实验得到了“萨尔州人协会”(伦理学第51/18号)的批准,并在根据《赫尔辛基宣言》获得知情同意后进行。标准测量应在韦斯特格伦管中使用乙二胺四乙酸 (EDTA)-抗凝血(标准 EDTA 浓度为 1.6 mg/mL 血液,欧洲标准 NF EN ISO 6710)进行。填充Westergren管所需的体积取决于制造商(因为较低的零件有时包含更宽的储液罐);全血的体积应约为 1 mL, 材料表中所示的试管的体?…

Representative Results

正确采集的图像序列的示例作为补充视频1(MovieS1.avi)提供。图 2 显示了该模型在各种条件下的一系列特征拟合。纤维蛋白原浓度由血浆Fib0中的纤维蛋白原浓度测定,假设血清根本没有任何纤维蛋白原。因此,Fib = C Fib0,其中C是血浆-血清混合物中的血浆体积分数。在先前的研究16中,Fib0</…

Discussion

为了使自动化协议高效工作,具有清晰的背景和适当的照明非常重要。深色背景可能会阻止存在有效的二值化阈值。对于具有一些溶血的样品,通常会随着时间的推移而发生(增加),重要的是首先验证所选的二值化阈值是否与初始和最终图像相关。

当涉及到图片的二值化过程时,ROI和二值化阈值的选择是最敏感的一步。在三个不同的图片上(在沉降过程的开始、中间和结?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了德国研究基金会FOR 2688 – Wa1336/12研究单位和玛丽·斯克沃多夫斯卡-居里资助协议第860436-EVIDENCE的支持。T. J. 和 C. W. 感谢法国德国大学 (DFH/UFA) 的资助。A. D. 感谢萨尔大学青年研究者资助。

Materials

Anticoagulant (EDTA or Heparin) tube (for blood sample) SARSTEDT 267001 or 265 Anticoagulated blood sample to characterize
Camera EOS M50 Canon Kit EF-M18-150 IS STM Any camera should work, provided that sector alimentation, connection to computer for automated shooting and adapted objective are available
Centrifuge HERMLE 302.00 V03 – Z 36 HK Requirements: at least 3000 x g ofr 7 min.
Micro-centrifuge MLW TH21 or any other way to determine the hematocrit
Micro-hematocrit capilaries Fisher scientific 11884040 or other capillaries/containers for hematocrit determination
Phosphate Buffered Saline (PBS) ThermoFisher 10010023 1x PBS, pH 7.4, 298 Osm
Pipettes (e.g. positive displacement pipette) Gilson FD10006 Pipette required to manipulate blood and/or packed cells.Other models are of course suitable, but be careful to treat blood and pakced cells as highly viscous fluids.
Wax sealing plate Hirschmann 9120101 Sealing wax for the micro-hematocrit capillaries
Westergren tubes Praxindo A9244560 Any other standard Wetsergren tube should work too
White background with illumination / / White sheet(s) of paper behind the samples, with usual room light is perfcetly sufficient.

Riferimenti

  1. Bedell, S. E., Bush, B. T. Erythrocyte sedimentation rate. From folklore to facts. The American Journal of Medicine. 78, 1001-1009 (1985).
  2. Grzybowski, A., Sak, J. Edmund Biernacki (1866-1911): Discoverer of the erythrocyte sedimentation rate. On the 100th anniversary of his death. Clinics in Dermatology. 29 (6), 697-703 (2011).
  3. Kushner, I., Mackiewicz, A. . The Acute Phase Response: An Overview. Acute Phase Proteins. , (1993).
  4. Tishkowski, K., Gupta, V. Erythrocyte Sedimentation Rate. StatPearls Publishing. , (2022).
  5. Menees, S. B., Powell, C., Kurlander, J., Goel, A., Chey, W. D. A meta-analysis of the utility of C-reactive protein, erythrocyte sedimentation rate, fecal calprotectin, and fecal lactoferrin to exclude inflammatory bowel disease in adults with IBS. The Americal Journal of Gastroenterology. 110 (3), 444-454 (2015).
  6. Brigden, M. L. Clinical utility of the erythrocyte sedimentation rate. Americal Family Physician. 60 (5), 1443-1450 (1999).
  7. Liu, S., et al. Preliminary case-control study to evaluate diagnostic values of C-reactive protein and erythrocyte sedimentation rate in differentiating active Crohn’s disease from intestinal lymphoma, intestinal tuberculosis and Behcet’s syndrome. The American Journal of the Medical Sciences. 346 (6), 467-472 (2013).
  8. Greidanus, N. V., et al. Use of erythrocyte sedimentation rate and C-reactive protein level to diagnose infection before revision total knee arthroplasty: A prospective evaluation. The Journal of Bone and Joint Surgery. 89 (7), 1409-1416 (2007).
  9. Flormann, D., Kuder, E., Lipp, P., Wagner, C., Kaestner, L. Is there a role of C-reactive protein in red blood cell aggregation. International Journal of Laboratory Hematology. 37 (4), 474-482 (2015).
  10. Brust, M., et al. The plasma protein fibrinogen stabilizes clusters of red blood cells in microcapillary flows. Scientific Reports. 4, 4348 (2014).
  11. Gray, S. J., Mitchell, E. B., Dick, G. F. Effect of purified protein fractions on sedimentation rate of erythrocytes. Proceedings of the Society for Experimental Biology and Medicine. 51 (3), 403-404 (1942).
  12. Kratz, A., et al. ICSH recommendations for modified and alternate methods measuring the erythrocyte sedimentation rate. International Journal of Laboratory Hematology. 39 (5), 448-457 (2017).
  13. Hung, W. T., Collings, A. F., Low, J. Erythrocyte sedimentation rate studies in whole human blood. Physics in Medicine and Biology. 39 (11), 1855-1873 (1994).
  14. Woodland, N. B., Cordatos, K., Hung, W. T., Reuben, A., Holley, L. Erythrocyte sedimentation in columns and the significance of ESR. Biorheology. 33 (6), 477-488 (1996).
  15. Holley, L., Woodland, N., Hung, W. T., Cordatos, K., Reuben, A. Influence of fibrinogen and haematocrit on erythrocyte sedimentation kinetics. Biorheology. 36 (4), 287-297 (1999).
  16. Dasanna, A. K., et al. Erythrocyte sedimentation: Effect of aggregation energy on gel structure during collapse. Physical Review. E. 105 (2-1), 024610 (2022).
  17. Darras, A., et al. Erythrocyte sedimentation: collapse of a high-volume-fraction soft-particle gel. Physical Review Letters. 128 (8), 088101 (2022).
  18. Darras, A., et al. Imaging erythrocyte sedimentation in whole blood. Frontiers in Physiology. 12, 729191 (2022).
  19. Darras, A., et al. Acanthocyte sedimentation rate as a diagnostic biomarker for neuroacanthocytosis syndromes: Experimental evidence and physical justification. Cells. 10 (4), 788 (2021).
  20. Rabe, A., et al. The erythrocyte sedimentation rate and its relation to cell shape and rigidity of red blood cells from chorea-acanthocytosis patients in an off-label treatment with dasatinib. Biomolecules. 11 (5), 727 (2021).
  21. Giavarina, D., Capuzzo, S., Pizzolato, U., Soffiati, G. Length of erythrocyte sedimentation rate (ESR) adjusted for the hematocrit: reference values for the TEST 1 method. Clinical Laboratory. 52 (5-6), 241-245 (2006).
  22. Bull, B. S. Is a standard ESR possible. Laboratory Medicine. 6 (11), 31-39 (1975).
  23. Bull, B. S., Brecher, G. An evaluation of the relative merits of the Wintrobe and Westergren sedimentation methods, including hematocrit correction. American Journal of Clinical Pathology. 62 (4), 502-510 (1974).
  24. Reinhart, W. H., Singh, A., Straub, P. W. Red blood cell aggregation and sedimentation: the role of the cell shape. British Journal of Haematology. 73 (4), 551-556 (1989).
  25. Jan, K., Usami, S., Smith, J. A. Influence of oxygen tension and hematocrit reading on ESRs of sickle cells: Role of RBC aggregation. Archives of Internal Medicine. 141 (13), 1815-1818 (1981).
  26. Issaq, H. J., Xiao, Z., Veenstra, T. D. Serum and plasma proteomics. Chemical Reviews. 107 (8), 3601-3620 (2007).
  27. Yu, Z., et al. Differences between human plasma and serum metabolite profiles. PLoS One. 6 (7), 21230 (2011).
  28. . Proper Pipetting Techniques – DE Available from: https://www.thermofisher.com/de/de/home/life-science/lab-plasticware-supplies/lab-plasticware-supplies-learning-center/lab-plasticware-supplies-resource-library/fundamentals-of-pipetting/proper-pipetting-techniques.html (2023)
  29. Otsu, N. A threshold selection method from gray-level histograms. IEEE Transaction on Systems, Man, and Cybernetics. 9 (1), 62-66 (1979).
  30. Solomon, C., et al. A comparison of fibrinogen measurement methods with fibrin clot elasticity assessed by thromboelastometry, before and after administration of fibrinogen concentrate in cardiac surgery patients. Transfusion. 51 (8), 1695-1706 (2011).
  31. Norouzi, N., Bhakta, H. C., Grover, W. H. Sorting cells by their density. PLoS One. 12 (7), 0180520 (2017).
  32. Trudnowski, R. J., Rico, R. C. Specific gravity of blood and plasma at 4 and 37 degrees C. Clinical Chemistry. 20 (5), 615-616 (1974).
  33. Késmárky, G., Kenyeres, P., Rábai, M., Tóth, K. Plasma viscosity: A forgotten variable. Clinical Hemorheology and Microcirculation. 39 (1-4), 243-246 (2008).
  34. Teece, L. J., et al. Gels under stress: The origins of delayed collapse. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 458, 126-133 (2014).
  35. Lindström, S. B., Kodger, T. E., Sprakel, J., Weitz, D. A. Structures, stresses, and fluctuations in the delayed failure of colloidal gels. Soft Matter. 8 (13), 3657-3664 (2012).
  36. Bartlett, P., Teece, L. J., Faers, M. A. Sudden collapse of a colloidal gel. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 85, 021404 (2012).
check_url/it/64502?article_type=t

Play Video

Citazione di questo articolo
Darras, A., John, T., Wagner, C., Kaestner, L. Erythrocyte Sedimentation Rate: A Physics-Driven Characterization in a Medical Context. J. Vis. Exp. (193), e64502, doi:10.3791/64502 (2023).

View Video