Summary

改良自体条件血清的生产及其在小鼠角膜上皮中愈合潜力的离 评估

Published: March 24, 2023
doi:

Summary

本文介绍了一种简化工艺并使自体条件反射血清(ACS)制备成本更低的方案。无需特殊的注射器或表面涂层玻璃珠。此外,改良的ACS(mACS)在鼠眼离体角膜伤口愈合方面比传统自 血清具有竞争优势。

Abstract

近几十年来,人类血液来源的局部疗法一直是临床医生的福音。自体血清 (AS) 和富血小板血浆 (PRP) 富含对角膜伤口愈合至关重要的促上皮生长因子。与AS不同,PRP基于差异离心系统,产生更多的血小板衍生生长因子。自体条件血清(ACS)不仅保留了AS和PRP的制备,而且还专注于免疫调节特性,这在炎症性疾病中很重要。

缺乏标准化的方案和高昂的制备成本是ACS临床应用的局限性。该视频实验演示了制备改良自体条件血清(mACS)滴眼液的标准操作程序。首先,在缺氧孵育期间将甘油作为血细胞稳定剂加入肝素注射器中。为了激活血细胞,在37°C下开始孵育4小时。然后,将血液样品在室温下以3,500× g 离心10分钟。通过0.22μm过滤器过滤上清液后,充分制备mACS滴眼液。

对mACS治疗效果的初步试验表明,在离 小鼠眼睛的角膜伤口愈合方面,mACS可能比传统AS具有竞争优势。本研究中使用的AS是根据已发表的研究和我院的临床实践制备的。因此,mACS对眼表疾病的疗效可以在未来的研究中通过 体内 动物研究和临床试验来评估。

Introduction

自体血清(AS)对干眼症的治疗效果最早由Fox等人在1980年代报道1。据信,AS中的润滑性能和必需的上皮生化成分,模仿天然泪液,有利于角膜上皮细胞的增殖。在过去的几十年里,已经在此基础上进行了几项研究。营养成分包括表皮生长因子(EGF)、维生素A、转化生长因子β(TGF-β)和其它细胞因子。有趣的是,血清富含TGF-β和维生素A,它们被认为在表皮增殖中起着关键作用2345。此外,在治疗眼表疾病患者时,多项研究表明AS滴眼液在患者报告的结果,其他客观干眼参数67和微观发现(如细胞密度8)中具有一些优势。荟萃分析研究表明,AS滴眼液治疗可能有一些改善患者综合征的益处,但长期结果和观察结果仍然缺乏910

与AS不同,富血小板血浆(PRP)是通过在制备过程中添加抗凝剂,进一步差异离心和血小板化学活化而获得的。与AS相比,PRP中存在许多化学物质和生长因子,例如TGF-β,血管内皮生长因子(VEGF)和EGF。它也已被应用于眼表疾病,在缓解症状方面具有临床益处11

上皮缺损和炎症之间的交联很复杂。值得注意的是,免疫病理生理学是眼表疾病的另一个重要问题。促炎细胞因子,如IL-1β和IFN-γ,被认为是炎症级联反应的关键介质12。因此,基于对免疫机制的理解,开辟了新的治疗途径。阻止这种炎症过程的策略,包括白细胞介素-1受体拮抗剂(IL-1Ra)和其他抗炎细胞因子的产生,也可能在眼表疾病中发挥重要作用131415

自 1998 年以来,Orthokine 是一种商业化的自体条件血清 (ACS),已在临床上用于患有骨关节炎 (OA)、类风湿性关节炎 (RA) 和脊柱疾病的骨科患者13。与AS和PRP相比,ACS16的特点是用化学涂层玻璃珠处理和缺氧孵育以激活单核细胞。从理论上讲,通过向细胞增加生存压力可以分泌更多的抗炎因子,导致更高浓度的必需免疫调节成分,包括IL-1Ra。据报道,与AS相比,ACS在OA中的治疗益处有所改善17。在某些方面,眼表疾病与骨科炎症性疾病具有相似的免疫背景。因此,基于人血源性治疗在骨科领域的成功结果,ACS在临床上皮细胞增效性和免疫调节特性方面可能优于常规治疗。虽然ACS已广泛应用于骨科炎症性疾病,但其在眼科的临床应用仍有待探索,可能因其成本高、缺乏文献支持、制备工艺缺乏规范等原因而受到阻碍,导致性能参差不齐。

在本视频文章中,展示了一种新颖、经济高效且方便的方法来生成修饰的 ACS (mACS) 或富含生长因子的血浆 (PRGF),从而生产出与商业化 ACS 具有相当实用价值的滴眼液。保留了添加抗凝剂和通过应激孵育触发血细胞分泌抗炎细胞因子的关键思想,但与化学诱导的方法(例如基于CrSO4涂层玻璃珠和商用试剂盒的方法)不同,该方法的临界应激状态是由缺氧孵育物理诱导的。此外,添加甘油以提供额外的益处,包括增加血细胞膜的稳定性,维持适当的渗透细胞外液压力18,以及在缺氧条件下避免细胞过度压力的适当营养来源。

Protocol

该研究是根据协议部分开头的机构指南进行的。所有协议和程序均根据《赫尔辛基宣言》进行,并由长庚医学基金会机构审查委员会审查和批准。所有志愿者都被告知这项研究的性质,并在纳入之前签署了一份知情同意书。整个实验过程所需的耗材如图 1 和 图2以及 材料表所示。 1. 制备生产mACS滴眼液所需的材料</…

Representative Results

图1和图2显示了实验所需的材料,图3显示了mACS制备过程中的顺序步骤和成功的中间产品。首先,将0.5mL的10%甘油溶液加入到每个10mL无菌试管中(图3A)。然后,从患者获得60-70mL静脉血,并将10mL血液注射到每个管中(图3B)。在制备之前,必须对患者的血液进行彻底、定期的实验室检查…

Discussion

在本研究中,描述了制备mACS的方案,并进一步显示了mACS滴眼液在动物模型伤口愈合中的益处。该mACS方案的关键修改是在每个试管中加入约0.5mL的10%甘油溶液,这在37°C孵育4小时期间产生合适的缺氧条件。 此设置为AS提供适当的压力,并促使细胞分泌有助于伤口愈合的必要生长因子。0.22 μm 过滤器可以帮助消除大分子蛋白质、血细胞和杂质,从而使最终产品纯净且粘附更少。

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

作者感谢Ya-Lan Chien和Chia-Ying Lee的出色技术援助,以及OnLine英语公司的语言版本。这项研究部分由长庚医学研究项目(批准号CMRPG3L1491)资助。

Materials

 96-well culture plate Merck KGaA, Germany CLS3997
Barraquer lid speculum katena K1-5355 15 mm
Barraquer needle holder Katena K6-3310 without lock 
Barron Vacuum Punch 8.0 mm katena K20-2108 for cutting filter paper
BD 10.0 mL vacutainer tubes containing heparin 158 USP units Becton,Dickinson and Company, US 367880 At least 6 tubes, necessary to collect blood for subsequent experiments and to avoid blood agglutination
BD 21 G butterfly-winged infusion set Becton,Dickinson and Company, US 367281 For even distribution of glycerol solution
C57BL/6 mice  National Laboratory Animal Center RMRC11005 for mouse model
Castroviejo forceps 0.12 mm katena  K5-2500
Centrifuge Eppendorf, Germany 5811000428 3,500 x g for 10 min
Cheng Yi 10.0 mL sterilized eye dropper bottle Cheng Yi Chemical, Taiwan CP405141 Must be sterile and as the storage container for the final product
Corneal rust ring remover with 0.5 mm burr Algerbrush IITM; Alger Equipment Co., Inc. Lago Vista, TX CHI-675 for debridement of the corneal epithelium
Dulbecco's modified minimal essential medium Merck KGaA, Germany D6429
Filter paper  Toyo Roshi Kaisha,Ltd. 1.11
Fluorescein sodium ophthalmic strips U.S.P OPTITECH OPTFL100 staining for corneal epithelial defect 
Incubator Firstek, Taiwan S300S 37 °C for 4 h
Kanam sterile gloves Kanam Latex Industries, India EN455 For aseptic operation
Merck 0.22 µm filter Merck KGaA, Germany PR05359 At least 2 filters for mACS filtration
Nang Kuang 250 mL 10% glycerol solution Nang Kuang Pharmaceutical, Taiwan 19496 To offer suitable membrane stabilization effect and extracellular osmotic pressure for blood cells
Normal saline TAIWAN BIOTECH CO., LTD. 100-120-1101
Skin biopsy punch 2mm STIEFEL 22650
Stereomicroscope Carl Zeiss Meditec, Dublin, CA SV11 microscope for surgery
Terumo 18 G needle Terumo, Taiwan SMACF0120-18BX 3.0 mL syringe with 18 G needle to extract the supernatant after centrifugation
Terumo 20.0 mL syringe Terumo, Taiwan MDSS20ES Could be used to collect serum after initial centrifugation and use it for secondary centrifugation.
Terumo 3.0 mL syringe with the 23 G needle Terumo, Taiwan MDSS03S2325 3.0 mL syringe is used to extract the supernatant after centrifugation. Then connect the filter and the 23 G needle for injection into the eye drop bottles.
Westcott Tenotomy Scissors Medium katena K4-3004

Riferimenti

  1. Fox, R. I., Chan, R., Michelson, J. B., Belmont, J. B., Michelson, P. E. Beneficial effect of artificial tears made with autologous serum in patients with keratoconjunctivitis sicca. Arthritis and Rheumatology. 27 (4), 459-461 (1984).
  2. Noble, B. A., et al. Comparison of autologous serum eye drops with conventional therapy in a randomised controlled crossover trial for ocular surface disease. The British Journal of Ophthalmology. 88 (5), 647-652 (2004).
  3. Bradley, J. C., Bradley, R. H., McCartney, D. L., Mannis, M. J. Serum growth factor analysis in dry eye syndrome. Clinical & Experimental Ophthalmology. 36 (8), 717-720 (2008).
  4. Alshammari, T. M., Al-Hassan, A. A., Hadda, T. B., Aljofan, M. Comparison of different serum sample extraction methods and their suitability for mass spectrometry analysis. Saudi Pharmaceutical Journal. 23 (6), 689-697 (2015).
  5. Tsubota, K., et al. Treatment of dry eye by autologous serum application in Sjögren’s syndrome. The British Journal of Ophthalmology. 83 (4), 390-395 (1999).
  6. Urzua, C. A., Vasquez, D. H., Huidobro, A., Hernandez, H., Alfaro, J. Randomized double-blind clinical trial of autologous serum versus artificial tears in dry eye syndrome. Current Eye Research. 37 (8), 684-688 (2012).
  7. Cui, D., Li, G., Akpek, E. K. Autologous serum eye drops for ocular surface disorders. Current Opinion in Allergy and Clinical Immunology. 21 (5), 493-499 (2021).
  8. Jirsova, K., et al. The application of autologous serum eye drops in severe dry eye patients; subjective and objective parameters before and after treatment. Current Eye Research. 39 (1), 21-30 (2014).
  9. Pan, Q., Angelina, A., Marrone, M., Stark, W. J., Akpek, E. K. Autologous serum eye drops for dry eye. Cochrane Database of Systematic Reviews. 2 (2), (2017).
  10. Wang, L., et al. Autologous serum eye drops versus artificial tear drops for dry eye disease: a systematic review and meta-analysis of randomized controlled trials. Ophthalmic Research. 63 (5), 443-451 (2020).
  11. Soni, N. G., Jeng, B. H. Blood-derived topical therapy for ocular surface diseases. The British Journal of Ophthalmology. 100 (1), 22-27 (2016).
  12. Solomon, A., et al. anti-inflammatory forms of interleukin-1 in the tear fluid and conjunctiva of patients with dry-eye disease. Investigative Ophthalmology and Visual Science. 42 (10), 2283-2292 (2001).
  13. Meijer, H., Reinecke, J., Becker, C., Tholen, G., Wehling, P. The production of anti-inflammatory cytokines in whole blood by physico-chemical induction. Inflammation Research. 52 (10), 404-407 (2003).
  14. Bielory, B. P., Shah, S. P., O’Brien, T. P., Perez, V. L., Bielory, L. Emerging therapeutics for ocular surface disease. Current Opinion in Allergy and Clinical Immunology. 16 (5), 477-486 (2016).
  15. Stevenson, W., Chauhan, S. K., Dana, R. Dry eye disease: an immune-mediated ocular surface disorder. Archives of Ophthalmology. 130 (1), 90-100 (2012).
  16. Yang, J., Guo, A., Li, Q., Wu, J. Platelet-rich plasma attenuates interleukin-1β-induced apoptosis and inflammation in chondrocytes through targeting hypoxia-inducible factor-2α. Tissue and Cell. 73, 101646 (2021).
  17. Shakouri, S. K., Dolati, S., Santhakumar, J., Thakor, A. S., Yarani, R. Autologous conditioned serum for degenerative diseases and prospects. Growth Factors. 39 (1-6), 59-70 (2021).
  18. Gull, M., Pasek, M. A. The role of glycerol and its derivatives in the biochemistry of living organisms, and their prebiotic origin and significance in the evolution of life. Catalysts. 11 (1), 86 (2021).
  19. Drew, V. J., Tseng, C. L., Seghatchian, J., Burnouf, T. Reflections on dry eye syndrome treatment: therapeutic role of blood products. Frontiers in Medicine. 5, 33 (2018).
  20. Hung, K. H., Yeh, L. K. Ex vivo and in vivo animal models for mechanical and chemical injuries of corneal epithelium. Journal of Visualized Experiments. (182), e63217 (2022).
  21. Geerling, G., Maclennan, S., Hartwig, D. Autologous serum eye drops for ocular surface disorders. The British Journal of Ophthalmology. 88 (11), 1467-1474 (2004).
  22. Rutgers, M., Saris, D. B., Dhert, W. J., Creemers, L. B. Cytokine profile of autologous conditioned serum for treatment of osteoarthritis, in vitro effects on cartilage metabolism and intra-articular levels after injection. Arthritis Research & Therapy. 12 (3), R114 (2010).
  23. Antebi, B., et al. Short-term physiological hypoxia potentiates the therapeutic function of mesenchymal stem cells. Stem Cell Research & Therapy. 9 (1), 265 (2018).
  24. Chen, Y. M., Wang, W. Y., Lin, Y. C., Tsai, S. H., Lou, Y. T. Use of autologous serum eye drops with contact lenses in the treatment of chemical burn-induced bilateral corneal persistent epithelial defects. BioMed Research International. 2022, 6600788 (2022).
  25. Diaz-Valle, D., et al. Comparison of the efficacy of topical insulin with autologous serum eye drops in persistent epithelial defects of the cornea. Acta Ophthalmologica. 100 (4), e912-e919 (2022).
  26. Metheetrairut, C., et al. Comparison of epitheliotrophic factors in platelet-rich plasma versus autologous serum and their treatment efficacy in dry eye disease. Scientific Reports. 12 (1), 8906 (2022).
  27. NaPier, E., Camacho, M., McDevitt, T. F., Sweeney, A. R. Neurotrophic keratopathy: current challenges and future prospects. Annals of Medicine. 54 (1), 666-673 (2022).
  28. Garcia-Conca, V., et al. Efficacy and safety of treatment of hyposecretory dry eye with platelet-rich plasma. Acta Ophthalmologica. 97 (2), e170-e178 (2019).
  29. Gholian, S., et al. Use of autologous conditioned serum dressings in hard-to-heal wounds: a randomised prospective clinical trial. Journal of Wound Care. 31 (1), 68-77 (2022).
  30. Raeissadat, S. A., Rayegani, S. M., Jafarian, N., Heidari, M. Autologous conditioned serum applications in the treatment of musculoskeletal diseases: a narrative review. Future Science OA. 8 (2), 776 (2022).
  31. Tokawa, P. K. A., Brossi, P. M., Baccarin, R. Y. A. Autologous conditioned serum in equine and human orthopedic therapy: A systematic review. Research in Veterinary Science. 146, 34-52 (2022).
  32. Evans, C. H., Chevalier, X., Wehling, P. Autologous conditioned serum. Physical Medicine and Rehabilitation. Clinics of North America. 27 (4), 893-908 (2016).
  33. Coskun, H. S., Yurtbay, A., Say, F. Platelet rich plasma versus autologous conditioned serum in osteoarthritis of the knee: clinical results of a five-year retrospective study. Cureus. 14 (4), e24500 (2022).
check_url/it/64911?article_type=t

Play Video

Citazione di questo articolo
Hsiung, C., Liu, Y., Su, C., Hsiung, C., Hung, K., Yeh, L. Production of Modified Autologous Conditioned Serum and Ex Vivo Assessment of Its Healing Potential in Murine Corneal Epithelium. J. Vis. Exp. (193), e64911, doi:10.3791/64911 (2023).

View Video