Summary

球囊直接损伤诱导的兔主动脉瓣狭窄模型

Published: March 31, 2023
doi:

Summary

需要适当的动物模型来了解主动脉瓣狭窄 (AVS) 的潜在病理机制并评估治疗干预的疗效。本方案描述了一种通过体内直接球囊损伤开发AVS兔模型的新程序。

Abstract

由于无法获得可靠的人主动脉瓣病源,动物模型正在成为了解主动脉瓣狭窄 (AVS) 潜在病理机制的重要工具。在各种动物模型中,AVS兔模型是大型动物研究中最常用的模型之一。然而,传统的AVS兔模型需要长期的膳食补充和基因操作才能诱导主动脉瓣的明显狭窄,限制了它们在实验研究中的使用。为了解决这些局限性,提出了一种新的AVS兔模型,其中狭窄是由主动脉瓣的直接球囊损伤引起的。本方案描述了一种在新西兰白兔(NZW)中诱导AVS的成功技术,包括准备,外科手术和术后护理的分步程序。这种简单且可重复的模型为研究AVS的发生和发展提供了一种有前途的方法,并为研究该疾病的潜在病理机制提供了有价值的工具。

Introduction

人们越来越认识到,由于无法获得与主动脉瓣狭窄 (AS) 进展相关的患病人主动脉瓣的可靠来源,使用适当的动物模型有助于更好地了解主动脉瓣狭窄 (AVS) 的潜在病理机制。在研究 AVS 的各种动物模型中,兔子是最常用的大型动物 AVS 模型之一,AVS 兔模型是通过补充胆固醇/维生素 D2 或基因操作诱导的 1,2,3,4。

尽管兔AVS模型为AVS的发展和进展提供了重要的见解,但正如我们的初步实验所看到的那样,一致且可重复地诱导AVS仍然具有挑战性。

除了饮食诱导和遗传易感的动物模型外,还通过小鼠的直接机械损伤建立了一种新的 AVS 模型 5,6。机械损伤模型成功诱导主动脉瓣狭窄,代表了野生型小鼠中简单且可重复的AVS模型。据我们所知,之前没有研究检查机械损伤对兔子模型中主动脉瓣的影响。因此,本研究提供了一种通过球囊直接损伤主动脉瓣诱导新西兰雄性大白兔AVS的新程序,可以准确模拟瓣膜性主动脉瓣狭窄的状况。该方案包括对准备、外科手术和术后护理的分步描述,这对于诱导可重复的AVS兔模型很有用。

Protocol

所有动物研究程序均根据《实验动物福利法》、《实验动物护理和使用指南》以及韩国天主教大学医学院机构动物护理和使用委员会(IACUC)提供的《动物实验指南和政策》进行批准和执行(批准号: CUMC-2021-0176-05)。本研究使用体重 3.5-4.0 kg 的 3 个月大雄性新西兰白兔 (NZW),在标准条件下将其饲养在单独的笼子中。给兔子喂食正常饮食或补充有50,000U维生素D2的富含胆固醇的0.5%饮食(见 …

Representative Results

主动脉瓣损伤诱导的兔AVS模型为了诱导兔AVS模型,本研究使用体重3.5-4.0 kg的雄性NZW兔。根据步骤2(图2)中描述的外科手术,通过主动脉瓣损伤建立AVS模型,导致机械性主动脉瓣变性和钙化。对照组包括喂食富含 0.5% 胆固醇的饮食(高胆固醇,HC)和 50,000 U 维生素 D2 (VitD2) 的兔子,这被称为饮食诱导的 AVS 模型。 主动脉瓣的评估…

Discussion

动物 AVS 模型通常用于研究 AVS 的病理方面,包括 AVS 的发生和发展。该协议引入了一种新的兔 AVS 模型,该模型由主动脉瓣直接球囊损伤诱导。在这项研究中,主动脉瓣损伤模型显示出明显的瓣叶增厚和钙化。与膳食补充剂诱导的轻度AVS模型相比,直接球囊损伤模型中的主动脉瓣选择性损伤,导致瓣尖增厚和运动受限,以及小叶增厚和钙化。这些结果与AVS10,11<sup class="xref…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了韩国国家研究基金会(NRF)资助,由韩国政府(MSIT)(编号2020R1A4A3079570),教育部(编号2021R1I1A1A01051425)和工业战略技术发展计划(第20014873号)资助,由韩国贸易,工业和能源部资助。

Materials

3-0 Silk suture AILEE SK312
4% paraformaldehyde(PFA) Intron IBS-BP031-2
Alizarin red Solution Millpore TMS-008-C
ASAHI SION BLUE  ASAHI Guide wire
Back Table Cover Yuhan kimberly 80101-30
Balloon In-deflation Device Demax Medical DID30s
Bionet Veterinary monitor BIONET BM3 VET
C-Arm SIEMENS Healthcare GmbH Cios alpha
Certified Rabbit Diet Purina 5322 4.7% Hydrogenated Coconut Oil, 0.5% Cholesterol, & 1% Molasse
Curadle Smart Incubator Autoelex CS-CV206 Intensive Care Unit (ICU)
Ergocalciferol Sigma-aldrich  E5750 Vitamin D2
Fechtner conjunctiva forceps titanium WORLD PRECISSION Instrument WP1820
Forceps HEBU HB203
Gentamicin Shin Poong
Glycopyrrolate  SamChunDang
Greenflex NS DAI HAN PHARM Normal saline 500 mL
Hematoxylin solution Sigma-aldrich  HT1079-1 SET
Heparin JW pharmaceutical 25,000 U
Infusion set for single use SWOON MEDICAL
Iodine Green pharmaceutical
Iodixanol GE Healthcare Visipaque Inflation solution (contrast agent)
IV catheter 22 G BD  382423
IV catheter 24 G BD 382412
Ketoprofen SamChunDang
Luer-Lok syringe 10 mL Becton Dickinson Medical
Luer-Lok syringe 3 mL Becton Dickinson Medical
Microscope OLYMPUS SZ61
Microtome ThermoFisher Scientific HM 325
MT stain kit Sigma-aldrich HT15-1kt
Needel holder Solco 009-1304
Needle Holder with Lock and Suture JEUNGDO BIO & PLANT H-1222-18
Paraffin LK LABKOREA H06-660-107
PBS Gibco 10010-023
Potassium chloride 40 Daihan Pharm KCl
Prelude Ideal Hydrophilic Sheath MERIT MEDICAL PID4F11018SS Sheath 4F
PTA Balloon Dilatation catheter Boston Scientific H749-3903280208-0 Balloon catheter 8.0 mm
Rompun Elanco Xylaxine
sterile Gauze DAE HAN Medical 10 cm x 20 cm 
Surgical Gloves Ansell Ansell
Surgical Gown Yuhan kimberly 90002-02
Surgical Scissors Nopa, Germany AC020/16
Surgical Tape 3M micopore 1530-1
Syringe 1 mL Shin Chang Medical
Syringe 10 mL Shin Chang Medical
Tissue cassette Scilav korea Cas3003
Transducer gel  SUNGHEUNG SH102
Tridol Yuhan Corp. Tramadol HCl
Ultrasound system Philps Affiniti 50
Von Kossa stain kit Abcam ab105689
Zoletil 50 Virbac korea Tiletamine & zolazepam

Riferimenti

  1. Aliev, G., Burnstock, G. Watanabe rabbits with heritable hypercholesterolaemia: A model of atherosclerosis. Histology and Histopathology. 13 (3), 797-817 (1998).
  2. Cimini, M., Boughner, D. R., Ronald, J. A., Aldington, L., Rogers, K. A. Development of aortic valve sclerosis in a rabbit model of atherosclerosis: An immunohistochemical and histological study. Journal of Heart Valve Disease. 14 (3), 365-375 (2005).
  3. Drolet, M. C., Couet, J., Arsenault, M. Development of aortic valve sclerosis or stenosis in rabbits: role of cholesterol and calcium. Journal of Heart Valve Disease. 17 (4), 381-387 (2008).
  4. Sider, K. L., Blaser, M. C., Simmons, C. A. Animal models of calcific aortic valve disease. International Journal of Inflammation. 2011, 364310 (2011).
  5. Honda, S., et al. A novel mouse model of aortic valve stenosis induced by direct wire injury. Arteriosclerosis, Thrombosis, and Vascular Biology. 34 (2), 270-278 (2014).
  6. Niepmann, S. T., et al. Graded murine wire-induced aortic valve stenosis model mimics human functional and morphological disease phenotype. Clinical Research in Cardiology. 108 (8), 847-856 (2019).
  7. Robbins, N., Thompson, A., Mann, A., Blomkalns, A. L. Isolation and excision of murine aorta; A versatile technique in the study of cardiovascular disease. Journal of Visualized Experiments. (93), e52172 (2014).
  8. Wirrig, E. E., Gomez, M. V., Hinton, R. B., Yutzey, K. E. COX2 inhibition reduces aortic valve calcification in vivo. Arteriosclerosis, Thrombosis, and Vascular Biology. 35 (4), 938-947 (2015).
  9. Jung, S. H., et al. Spatiotemporal dynamics of macrophage heterogeneity and a potential function of Trem2(hi) macrophages in infarcted hearts. Nature Communications. 13 (1), 4580 (2022).
  10. Freeman, R. V., Otto, C. M. Spectrum of calcific aortic valve disease: Pathogenesis, disease progression, and treatment strategies. Circulation. 111 (24), 3316-3326 (2005).
  11. Lindman, B. R., et al. Calcific aortic stenosis. Nature Reviews Disease Primers. 2, 16006 (2016).
  12. Cuniberti, L. A., et al. Development of mild aortic valve stenosis in a rabbit model of hypertension. Journal of the American College of Cardiology. 47 (11), 2303-2309 (2006).
  13. Marechaux, S., et al. Identification of tissue factor in experimental aortic valve sclerosis. Cardiovascular Pathology. 18 (2), 67-76 (2009).
  14. Hara, T., et al. Progression of calcific aortic valve sclerosis in WHHLMI rabbits. Atherosclerosis. 273, 8-14 (2018).
check_url/it/65078?article_type=t

Play Video

Citazione di questo articolo
Kim, E., Park, E., Kim, J., Lee, E., Park, S., Kim, C. W., Choi, I. J., Oak, M., Chang, K. A Rabbit Aortic Valve Stenosis Model Induced by Direct Balloon Injury. J. Vis. Exp. (193), e65078, doi:10.3791/65078 (2023).

View Video