Summary

Моделирование опухолей головного мозга in vivo с использованием электропорационной доставки плазмидной ДНК, представляющей мутационные сигнатуры пациента

Published: June 23, 2023
doi:

Summary

Использование иммунокомпетентной, аутохтонной модели опухоли, основанной на распространенных мутациях пациента, для доклинических испытаний имеет решающее значение для иммунотерапевтического тестирования. Этот протокол описывает метод создания мышиных моделей опухолей головного мозга с использованием электропорационной доставки плазмидной ДНК, которая представляет распространенные мутации пациента, что обеспечивает точную, воспроизводимую и согласованную модель мыши.

Abstract

Модели опухолей имеют решающее значение для доклинических испытаний опухолей головного мозга с точки зрения изучения новых, более эффективных методов лечения. При значительном интересе к иммунотерапии еще более важно иметь последовательную, клинически значимую, иммунокомпетентную мышиную модель для изучения популяций опухолевых и иммунных клеток в головном мозге и их реакции на лечение. В то время как большинство доклинических моделей используют ортотопическую трансплантацию установленных линий опухолевых клеток, представленная здесь система моделирования позволяет «персонализировать» представление специфических для пациента опухолевых мутаций в постепенном, но эффективном развитии из конструкций ДНК, вставленных в делящиеся нейральные клетки-предшественники (NPC) in vivo. Мозаичный анализ ДНК-конструкций осуществляется с помощью метода двойного рекомбиназно-опосредованного кассетного обмена (MADR), что позволяет осуществлять однокопийный соматический мутагенез драйверных мутаций. Используя новорожденных детенышей мышей в возрасте от рождения до 3 дней, NPC становятся мишенью, используя эти делящиеся клетки, выстилающие боковые желудочки. Микроинъекция плазмид ДНК (например, полученных из MADR, транспозонов, CRISPR-направленной sgRNA) в желудочки сопровождается электропорацией с помощью лопастей, которые окружают ростральную область головы. При электрической стимуляции ДНК поглощается делящимися клетками с возможностью интеграции в геном. Применение этого метода успешно продемонстрировано при развитии опухолей головного мозга как у детей, так и у взрослых, в том числе наиболее распространенной злокачественной опухоли головного мозга – глиобластомы. В данной статье обсуждаются и демонстрируются различные этапы разработки модели опухоли головного мозга с использованием этой методики, включая процедуру обезболивания молодых детенышей мышей до микроинъекции плазмидной смеси с последующей электропорацией. С помощью этой автохтонной, иммунокомпетентной мышиной модели исследователи получат возможность расширить подходы к доклиническому моделированию в усилиях по улучшению и изучению эффективного лечения рака.

Introduction

Модели опухолей головного мозга мышей имеют решающее значение для понимания механизмов образования и лечения опухолей головного мозга. Современные модели, как правило, включают в себя быструю подкожную или ортотопическую трансплантацию широко используемых линий опухолевых клеток, основанных на ограниченном числе драйверных мутаций или моделях ксенотрансплантатов, полученных от пациентов, с использованием мышей с иммунодефицитом, которые препятствуют надлежащим исследованиям иммунотерапии 1,2,3,4. Кроме того, эти доклинические результаты могут приводить к ложноположительным результатам, поскольку такие модели могут демонстрировать драматические, часто лечебные эффекты в ответ на терапию, но это не переносится на клинику 2,5,6,7. Возможность быстро создавать генетически модифицированные доклинические модели мышей, которые в большей степени отражают мутационные сигнатуры пациентов, является обязательным условием для повышения достоверности доклинических результатов.

Доставка плазмид ДНК на основе электропорации (ЭП) для индуцирования мутаций с потерей функции (LOF) и усилением функции (GOF) позволяет создавать такие модели. Мы разработали метод для еще более точного представления мутаций драйверов GOF, называемый мозаичным анализом с двойным рекомбиназно-опосредованным кассетным обменом, или MADR8. Этот метод позволяет осуществлять экспрессию интересующего гена (или генов) контролируемым, локус-специфичным образом в соматических клетках8. В сочетании с другими молекулярными инструментами, такими как кластеризованные регулярно чередующиеся короткие палиндромные повторы (CRISPR), различные мутации пациентов могут быть объединены для разработки моделей опухолей головного мозга мышей. Этот метод был использован для различных опухолей головного мозга у детей, включая глиомы и эпендимомы8, а также для моделей опухолей головного мозга у взрослых, таких как глиобластома (ГБМ).

Несмотря на то, что ВП-метод моделирования опухолей не так распространен, как трансплантация, нижеследующее демонстрирует простоту и высокую воспроизводимость этой системы моделирования. Мышей mTmG используют для вставки MADR-плазмидной ДНК 8,9. Эта система позволяет осуществлять рекомбинацию сайтов-мишеней loxP и Flp-рекомбиназы (FRT), расположенных в локусе Rosa26, для последующей вставки плазмиды донорской ДНК (т.е. интересующего гена GOF)8,9. Следующий протокол демонстрирует прямолинейность этого метода после усердной практики и способность разрабатывать модели опухолей головного мозга мышей в автохтонной, последовательной манере.

Protocol

Все процедуры, предусмотренные этим протоколом, были одобрены Комитетом по уходу за животными и их использованию (IACUC) Медицинского центра Cedars Sinai. Гомозиготных мышей mTmG скрещивали с мышами C57BL/6J для получения пометов разнополых гетерозиготных мышей mTmG для использования в следующе?…

Representative Results

Протокол, описанный выше, был использован для успешной разработки как детских, так и взрослых моделей мышей с опухолями головного мозга, причем первая из них была подробно опубликована в Kim et al.8. При правильной технике и тщательном планировании плазмидного дизайна успех ра?…

Discussion

Доставка плазмидной ДНК с помощью электропорации позволяет in vivo использовать молекулярную биологию, аналогичную той, которая используется в генетически модифицированных моделях мышей, но со скоростью, локализацией и эффективностью вирусной трансдукции 8,13,14.<su…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Благодарим Ги Бум Кима за иммунофлуоресцентное окрашивание и изображения. Мы также благодарим Эмили Хатанаку, Наоми Кобриц и Пола Линеша за полезные советы по протоколу.

Materials

0.1-2.5 µL 1-channel pipette Eppendorf 3123000012
2 µL pipette tips Fisher Scientific 02-707-442
20 µL pipette tips Fisher Scientific 02-707-432
2-20 µL 1-channel pipette Eppendorf 3123000098
DNAZap PCR DNA Degradation Solutions Fisher Scientific AM9890
ECM 830 Square Porator Electroporator BTX 45-0662
Electrode Gel Parker Labs PLI152CSZ
Fast Green Dye Sigma-Aldrich F7258-25G
Helping Hands Soldering Aid Pro'sKit 900-015
Micro Dissecting Scissors, 4.5" Straight Sharp Roboz RS-5916
Mouse Strain: C57BL/6J The Jackson Laboratory JAX: 000664
Mouse Strain: Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J The Jackson Laboratory  JAX: 007676
Parafilm Grainger 16Y894
Plasmid: pCag-FlpO-2A-Cre EV  Addgene 129419
Platinum Tweezertrode, 7 mm Diameter BTX 45-0488
Sharps container, 1-quart Uline S-15307
Standard Glass Capillaries, 4 in, 1 mm OD, 0.58 mm ID World Precision Instruments 1B100F-4 Capillary pipettes need to be pulled – see reference 10 for details. 
Vertical Micropipette Puller Sutter Instruments P-30 Heat settings: Heat #1 at 880, Heat #2 at 680; pull at 800. See reference 10 for more details on pulling. 
Vimoba Tablet Solution Quip Laboratories VIMTAB
XenoWorks Digital Microinjector Sutter Instruments BRE
XenoWorks Micropipette Holder Sutter Instruments BR-MH

Riferimenti

  1. Brabetz, S., et al. A biobank of patient-derived pediatric brain tumor models. Nature Medicine. 24 (11), 1752-1761 (2018).
  2. Hadad, A. F., et al. Mouse models of glioblastoma for the evaluation of novel therapeutic strategies. Neuro-Oncology Advances. 3 (1), (2021).
  3. He, C., et al. Patient-derived models recapitulate heterogeneity of molecular signatures and drug response in pediatric high-grade glioma. Nature Communications. 12 (1), 4089 (2021).
  4. Szatmári, T., et al. Detailed characterization of the mouse glioma 261 tumor model for experimental glioblastoma therapy. Cancer Science. 97 (6), 546-553 (2006).
  5. Genoud, V., et al. Responsiveness to anti-PD-1 and anti-CTLA-4 immune checkpoint blockade in SB28 and GL261 mouse glioma models. Oncoimmunology. 7 (12), 1501137 (2018).
  6. Reardon, D. A., et al. Effect of Nivolumab vs Bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 randomized clinical trial. JAMA Oncology. 6 (7), 1003-1010 (2020).
  7. Wainwright, D. A., et al. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clinical Cancer Research. 20 (20), 5290-5301 (2014).
  8. Kim, G. B., et al. Rapid generation of somatic mouse mosaics with locus-specific, stably integrated transgenic elements. Cell. 179 (1), 251-267 (2019).
  9. Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L., Luo, L. A global double-fluorescent Cre reporter mouse. Genesis. 45 (9), 593-605 (2007).
  10. Rincon Fernandez Pacheco, D., Sabet, S., Breunig, J. J. Preparation, assembly, and transduction of transgenic elements using mosaic analysis with dual recombinase (MADR). STAR protocols. 1 (3), 100199 (2020).
  11. White, H. E., Goswami, A., Tucker, A. S. The intertwined evolution and development of sutures and cranial morphology. Frontiers in Cell and Developmental Biology. 9, 653579 (2021).
  12. Ran, F. A., et al. Genome engineering using the CRISPR-Cas9 system. Nature Protocols. 8 (11), 2281-2308 (2013).
  13. Breunig, J. J., et al. Ets factors regulate neural stem cell depletion and gliogenesis in Ras pathway glioma. Cell Reports. 12 (2), 258-271 (2015).
  14. Hambardzumyan, D., Parada, L. F., Holland, E. C., Charest, A. Genetic modeling of gliomas in mice: new tools to tackle old problems. Glia. 59 (8), 1155-1168 (2011).
  15. Feng, W., et al. CRISPR-mediated loss of function analysis in cerebellar granule cells using in utero electroporation-based gene transfer. Journal of Visualized Experiments. (136), e57311 (2018).
  16. Zhang, L., et al. Gene knock-in by CRISPR/Cas9 and cell sorting in macrophage and T cell lines. Journal of Visualized Experiments. (177), e62328 (2021).
  17. Artegiani, B., Lange, C., Calegari, F. Expansion of embryonic and adult neural stem cells in utero electroporation or viral stereotaxic injection. Journal of Visualized Experiments. (68), e4093 (2012).
  18. Rice, H., Suth, S., Cavanaugh, W., Bai, J., Young-Pearse, T. L. In utero electroporation followed by primary neuronal culture for studying gene function in subset of cortical neurons. Journal of Visualized Experiments. (44), e2103 (2010).
  19. Zanders, E. D., Svensson, F., Bailey, D. S. Therapy for glioblastoma: is it working. Drug Discovery Today. 24 (5), 1193-1201 (2019).
check_url/it/65286?article_type=t

Play Video

Citazione di questo articolo
Grausam, K. B., Breunig, J. J. Modeling Brain Tumors In Vivo Using Electroporation-Based Delivery of Plasmid DNA Representing Patient Mutation Signatures. J. Vis. Exp. (196), e65286, doi:10.3791/65286 (2023).

View Video