Summary

筛选癌细胞中的离子通道

Published: June 16, 2023
doi:

Summary

离子通道的药理学靶向是治疗实体瘤的一种有前途的方法。提供了详细的方案,用于表征癌细胞中的离子通道功能并分析离子通道调节剂对癌症活力的影响。

Abstract

离子通道对于细胞发育和维持细胞稳态至关重要。离子通道功能的扰动有助于各种疾病或离子通道病的发展。癌细胞利用离子通道来驱动自身的发育,以及作为肿瘤的改善,并在包括各种非癌细胞的微环境中同化。此外,肿瘤微环境中生长因子和激素水平的增加可导致离子通道表达增强,从而有助于癌细胞增殖和存活。因此,离子通道的药理学靶向是治疗实体恶性肿瘤(包括原发性和转移性脑癌)的潜在有前途的方法。本文描述了表征癌细胞中离子通道功能的协议以及分析离子通道调节剂以确定其对癌症活力的影响的方法。这些包括对细胞进行离子通道染色,测试线粒体的极化状态,使用电生理学建立离子通道功能,以及进行活力测定以评估药物效力。

Introduction

膜转运蛋白对于细胞之间的通讯以及维持细胞稳态至关重要。在膜转运蛋白中,离子通道用于驱动细胞的生长和发育,并在具有挑战性和不断变化的环境中维持细胞的状态。据报道,离子通道还可以驱动和支持实体瘤的发展,包括全身和中枢神经系统(CNS)1,2。例如,KCa3.1通道负责调节膜电位和控制细胞体积,这在细胞周期调节中很重要。据报道,有缺陷的KCa3.1通道有助于肿瘤细胞的异常增殖3。此外,离子通道可能有助于癌症的转移性播散。例如,瞬时受体电位 (TRP) 通道参与 Ca 2+ 和 Mg2+ 内流;这种涌入激活了几种激酶和热休克蛋白,它们的作用是调节肿瘤周围的细胞外基质,这反过来又对启动癌症转移很重要4。

由于离子通道有助于癌症的发展,它们也可能是药物相关癌症治疗的靶标。例如,对治疗方式(包括化疗和新型免疫疗法)的耐药性与离子通道功能失调有关5,6,7此外,离子通道正在成为阻碍癌症生长和发展的重要药物靶点,正在研究重新利用的小分子(FDA批准)药物以及生物聚合物,包括单克隆抗体1,2,8,9。虽然在这方面取得了很大进展,但离子通道癌症药物的发现仍然不发达。这部分是由于研究癌细胞中离子通道的独特挑战。例如,在为慢效化合物设置电生理学测定方面存在技术限制,并且在通道活化和药物作用方面存在时间差异。此外,化合物的溶解度也会阻碍进展,因为目前常用的大多数自动化电生理系统都使用疏水底物,这可能会导致化合物吸附而导致伪影。此外,使用常规电生理学测定进行筛选大型生物有机分子疗法(如天然产物、肽和单克隆抗体)在技术上具有挑战性10。最后,癌细胞的生物电特性仍然知之甚少11

同时,离子通道的免疫荧光染色通常具有挑战性。这部分是由于它们的结构和它们在膜中的环境的复杂性,这会影响产生和使用抗体进行显微镜研究的能力。尤其重要的是,对用于染色离子通道的抗体的特异性、亲和力和重现性进行验证。应根据离子通道的商业抗体的验证策略和发表记录来考虑。实验应包括阴性对照,以证明通过敲低或敲除目标蛋白缺乏非特异性结合。或者,基于mRNA或蛋白质测定的靶蛋白不存在或丰度低的细胞系可以作为阴性对照。例如,这项研究显示了(GABA)受体亚基Gabra5在髓母细胞瘤细胞系(D283)中的定位。对具有siRNA敲低的D283细胞和另一种小脑髓母细胞瘤细胞系Daoy细胞进行Gabra5染色,并且没有明显的染色(数据未显示)。

本文介绍了分析和测定离子通道功能以及离子通道调节剂对癌细胞的影响的方法。为(1)离子通道染色细胞,(2)测试线粒体的极化状态,(3)使用电生理学建立离子通道功能以及(4)体药物验证提供了方案。这些协议强调A型γ-氨基丁酸(GABAA)受体2,12,13,14,15,16氯化阴离子通道和主要抑制性神经递质受体的研究。然而,这里介绍的方法适用于研究许多其他癌细胞和离子通道。

Protocol

1. 培养细胞中的免疫标记离子通道 准备细胞和实验装置将细胞维持在75cm2 培养瓶中作为活跃生长的培养物。传代一次细胞,直到它们变得50%-90%汇合,具体取决于所用细胞系的倍增时间。注意:对于本研究,使用了D283细胞,即第3组髓母细胞瘤细胞系。 将培养瓶中的细胞收集到离心管(15 mL或50 mL)中,并加入2 mL的0.25%胰蛋白酶-EDTA以分离贴壁细胞。在室温(RT)下?…

Representative Results

以上是可用于表征癌细胞中离子通道的选择程序。第一个方案突出显示离子通道的染色。如前所述,在染色离子通道或就此而言,染色细胞外膜中存在的任何蛋白质时存在许多挑战。图1所示是五聚体GABAA受体亚基的染色。第二个协议强调了测试癌细胞中线粒体极化状态的结果。线粒体对细胞活力和增殖以及细胞死亡起着至关重要的作用。在哺乳动物细胞中,线粒体?…

Discussion

离子通道功能的变化会改变细胞内信号级联,从而影响细胞的整体功能。在过去的十年中,越来越清楚的是离子通道对癌细胞的生长和转移很重要。重要的是,许多离子通道是针对各种疾病的已获批疗法的主要靶标24。研究人员已经探索了离子通道是否可能是抗癌靶点,初步结果是有希望的2,16,25该领域刚刚…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

作者感谢Thomas E. & Pamela M. Mischell Family Foundation对S.S.的支持,以及Harold C. Schott基金会对加州大学医学院Harold C. Schott捐赠主席的资助。

Materials

ABS SpectraMax Plate Reader Molecular Devices ABS
Accutase Invitrogen 00-4555-56
Alexa Flor 488 Invitrogen A32723 Goat Anti-Rabbit
Antibiotic-Antimycotic Gibco 15240-062 100x
B27 Supplement Gibco 12587-010 Lacks vitamin A
Biosafety Cabinet LABCONCO 302381101 Class II, Type A2
Bovine Serum Albumin Fisher Scientific BP1606-100
CO2 Incubator Fisher Scientific 13-998-211 Heracell VIOS 160i
Calcium Chloride Fisher Scientific C7902 Dihydrate
Cell Culture Dishes, 150 mm Fisher Scientific 12-600-004 Cell culture treated
Cell Culture Flasks, 75 cm2 Fisher Scientific 430641U Cell culture treated
Cell Culture Plates, 6 well Fisher Scientific 353046 Cell culture treated
Cell Culture Plates, 96 well Fisher Scientific 353072 Cell culture treated
Centrifuge Eppendorf EP-5804R Refrigerated
Corning CoolCell Fisher Scientific 07-210-0006
Coverslips, 22 x 22 mm Fisher Scientific 12-553-450 Corning brand
D283 Med ATCC HTB-185
DABCO Mounting Media EMS 17989-97
D-Glucose Sigma Life Sciences D9434
Dimethyl Sulfoxide Sigma Aldrich D2650 Cell culture grade
DMEM/F12, base media Fisher Scientific 11330-032 With phenol red
DMEM/F12, phenol red free Fisher Scientific 21041-025
EGTA Sigma Aldrich E4378
Epidermal Growth Factor STEMCELL 78006.1
FCCP Abcam AB120081
Fetal Bovine Serum, Qualified Gibco 10437-028
Fibroblast Growth Factor, Basic Millipore GF003
GARBA5 Antibody Aviva ARP30687_P050 Rabbit Polyclonal
Glutamax Gibco 35050-061
Glycerol Mounting Medium EMS 17989-60 With DAPI+DABCO
Hemocytometer Millipore Sigma
Heparin STEMCELL 7980
HEPES HyClone SH3023701 Solution
HEPES Fisher Scientific BP310-500 Solid
ImageJ Open platform With Fiji plugins
Immuno Mount DAPI EMS 17989-97
KRM-II-08 experimental compounds not available from a commercial source
Leica Application Suite X Leica Microsystems
Leukemia Inhibitory Factor Novus N276314100U
L-Glutamine Gibco 25030-081
Magnesium Chloride Sigma Aldrich M9272 Hexahydrate
Microscope, Confocal Leica SP8
Microscope, Light VWR 76382-982 DMiL Inverted
MTS – Promega One Step Promega G3581
Multi-channel pipette, 0.5-10 µL Eppendorf Z683914
Multi-channel pipette, 10-100 µL Eppendorf Z683930
Multi-channel pipette, 30-300 µL Eppendorf Z683957
Nest-O-Patch Heka
Neurobasal-A Medium Gibco 10888022 Without vitamin A
Neurobasal-A Medium Gibco 12348-017 Phenol red free
Non-Essential Amino Acids Gibco 11140-050
NOR-QH-II-66 experimental compounds not available from a commercial source
Parafilm Fisher Scientific 50-998-944 4 inch width
Paraformaldehyde EMS RT-15710
PATHCHMASTER Heka
Penicillin-Streptomycin Gibco 15140-122
Perfusion System Nanion 4000120
PFA EMS RT-15710
Phosphate Bufered Saline Fisher Scientific AAJ75889K2 Reagent grade
Poly-D-Lysine Fisher Scientific A3890401
Poly-L-Lysine Sigma Life Sciences P4707
Port-a-Patch Nanion 21000072
Potassium Chloride Sigma Life Sciences P5405
Primary Antibody Invitrogen MA5-34653 Rabbit Monoclonal
Prism GraphPad
Propofol Fisher Scientific NC0758676 1 mL ampule
QH-II-66 experimental compounds not available from a commercial source
Reagent Reservoirs VWR 89094-664 Sterile
Slides, 75 x 25 mm Fisher Scientific 12-544-7 Frosted one side
Sodium Bicarbonate Corning 25-035-Cl
Sodium Chloride Fisher Scientific S271-3
Sodium Pyruvate Gibco 11360-070
Synth-a-Freeze Medium Gibco R00550 Cryopreservation
TMRE Fisher Scientific 50-196-4741 Reagent
TMRE Kit Abcam AB113852 Kit
Triton X-100 Sigma Aldrich NC0704309
Trypan Blue Gibco 15-250-061 Solution, 0.4%
Trypsin/EDTA Gibco 25200-072 Solution, 0.25%
Vortex Mixer VWR 97043-562
Whatman Filter Paper Fisher Scientific 09-927-841

Riferimenti

  1. Prevarskaya, N., Skryma, R., Shuba, Y. Ion channels in cancer: Are cancer hallmarks oncochannelopathies. Physiological Reviews. 98 (2), 559-621 (2018).
  2. Rao, R., et al. Ligand-gated neurotransmitter receptors as targets for treatment and management of cancers. Frontiers in Physiology. 13, 839437 (2022).
  3. Mohr, C. J., et al. Cancer-associated intermediate conductance Ca2+-activated K+ channel KCa3.1. Cancers. 11 (1), 109 (2019).
  4. Fels, B., Bulk, E., Petho, Z., Schwab, A. The role of TRP channels in the metastatic cascade. Pharmaceuticals. 11 (2), 48 (2018).
  5. Eil, R., et al. Ionic immune suppression within the tumour microenvironment limits T cell effector function. Nature. 537 (7621), 539-543 (2016).
  6. Haustrate, A., Hantute-Ghesquier, A., Prevarskaya, N., Lehen’kyi, V. Monoclonal antibodies targeting ion channels and their therapeutic potential. Frontiers in Pharmacology. 10, 606 (2019).
  7. Kischel, P., et al. Ion channels: New actors playing in chemotherapeutic resistance. Cancers. 11 (3), 376 (2019).
  8. Tuszynski, J., Tilli, T. M., Levin, M. Ion channel and neurotransmitter modulators as electroceutical approaches to the control of cancer. Current Pharmaceutical Design. 23 (32), 4827-4841 (2017).
  9. Kale, V. P., Amin, S. G., Pandey, M. K. Targeting ion channels for cancer therapy by repurposing the approved drugs. Biochimica Biophysica Acta. 1848 (10), 2747-2755 (2015).
  10. Wickenden, A., Priest, B., Erdemli, G. Ion channel drug discovery: Challenges and future directions. Future Medicinal Chemistry. 4 (5), 661-679 (2012).
  11. Rocha, P. R. F., Elghajiji, A., Tosh, D. Ultrasensitive system for electrophysiology of cancer cell populations: A review. Bioelectricity. 1 (3), 131-138 (2019).
  12. Sengupta, S., et al. α5-GABAA receptors negatively regulate MYC-amplified medulloblastoma growth. Acta Neuropathologica. 127 (4), 593-603 (2014).
  13. Jonas, O., et al. First in vivo testing of compounds targeting Group 3 medulloblastomas using an implantable microdevice as a new paradigm for drug development. Journal of Biomedical Nanotechnology. 12 (6), 1297-1302 (2016).
  14. Kallay, L., et al. Modulating native GABAA receptors in medulloblastoma with positive allosteric benzodiazepine-derivatives induces cell death. Journal of Neurooncology. 142 (3), 411-422 (2019).
  15. Pomeranz Krummel, D. A., et al. Melanoma cell intrinsic GABAA receptor enhancement potentiates radiation and immune checkpoint response by promoting direct and T cell-mediated anti-tumor activity. International Journal of Radiation Oncology, Biology, Physics. 109 (4), P1040-P1053 (2021).
  16. Bhattacharya, D., et al. Therapeutically leveraging GABAA receptors in cancer. Experimental Biology and Medicine. 246 (19), 2128-2135 (2021).
  17. Mazia, D., Schatten, G., Sale, W. Adhesion of cells to surfaces coated with polylysine. Applications to electron microscopy. Journal of Cell Biology. 66 (1), 198-200 (1975).
  18. Wiatrak, B., Kubis-Kubiak, A., Piwowar, A., Barg, E. PC12 cell line: Cell types, coating of culture vessels, differentiation and other culture conditions. Cells. 9 (4), 958 (2020).
  19. Baker, J. R. Fixation in cytochemistry and electron-microscopy. Journal of Histochemistry and Cytochemistry. 6 (5), 303-308 (1958).
  20. Chung, J. Y., et al. Histomorphological and molecular assessments of the fixation times comparing formalin and ethanol-based fixatives. Journal of Histochemistry and Cytochemistry. 66 (2), 121-135 (2018).
  21. Crowley, L. C., Christensen, M. E., Waterhouse, N. J. Measuring mitochondrial transmembrane potential by TMRE staining. Cold Spring Harbor Protocols. 2016 (12), (2016).
  22. Cory, A. H., Owen, T. C., Barltrop, J. A., Cory, J. G. Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Communications. 3 (7), 207-212 (1991).
  23. Maro, B., Marty, M. C., Bornens, M. In vivo and in vitro effects of the mitochondrial uncoupler FCCP on microtubules. EMBO Journal. 1 (11), 1347-1352 (1982).
  24. Zheng, J., et al. Mechanism for regulation of melanoma cell death via activation of thermo-TRPV4 and TRPV. Journal of Oncology. 2019, 7362875 (2019).
  25. Konno, K., Watanabe, M., Luján, R., Ciruela, F. Immunohistochemistry for ion channels and their interacting molecules: Tips for improving antibody accessibility. Receptor and Ion Channel Detection in the Brain. , (2016).
  26. Mortensen, M., Smart, T. G. Single-channel recording of ligand-gated ion channels. Nature Protocols. 2 (11), 2826-2841 (2007).
  27. Franken, N. A., Rodermond, H. M., Stap, J., Haveman, J., van Bree, C. Clonogenic assay of cells in vitro. Nature Protocols. 1 (5), 2315-2319 (2006).
  28. Rafehi, H., et al. Clonogenic assay: Adherent cells. Journal of Visualized Experiments. (49), 2573 (2011).
  29. Scudiero, D. A., et al. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Ricerca sul cancro. 48 (17), 4827-4833 (1988).
  30. Wang, P., Henning, S. M., Heber, D. Limitations of MTT and MTS-based assays for measurement of antiproliferative activity of green tea polyphenols. PLoS One. 5, e10202 (2010).
  31. Berridge, M. V., Tan, A. S. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Archives of Biochemistry and Biophysics. 303 (2), 474-482 (1993).
  32. Plumb, J. A., Milroy, R., Kaye, S. B. Effects of the pH dependence of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide-formazan absorption on chemosensitivity determined by a novel tetrazolium-based assay. Ricerca sul cancro. 49 (16), 4435-4440 (1989).
  33. Chakrabarti, R., Kundu, S., Kumar, S., Chakrabarti, R. Vitamin A as an enzyme that catalyzes the reduction of MTT to formazan by vitamin C. Journal of Cellular Biochemistry. 80 (1), 133-138 (2000).
  34. Dong, G. W., Preisler, H. D., Priore, R. Potential limitations of in vitro clonogenic drug sensitivity assays. Cancer Chemotherapy and Pharmacology. 13 (3), 206-210 (1984).
  35. Sun, J., et al. STIM1- and Orai1-Mediated Ca2+oscillation orchestrates invadopodium formation and melanoma invasion. Journal of Cell Biology. 207 (4), 535-548 (2014).
check_url/it/65427?article_type=t

Play Video

Citazione di questo articolo
Kallay, L., Gawali, V. S., Toukam, D. K., Bhattacharya, D., Jenkins, A., Sengupta, S., Pomeranz Krummel, D. A. Screening Ion Channels in Cancer Cells. J. Vis. Exp. (196), e65427, doi:10.3791/65427 (2023).

View Video