Summary

在宏观水凝胶中包埋无细胞蛋白质合成反应的方法

Published: June 23, 2023
doi:

Summary

在这里,我们提出了两种方案,用于在宏观尺度的水凝胶基质中嵌入无细胞蛋白质合成反应,而无需外部液相。

Abstract

合成基因网络为科学家和工程师提供了一个平台,以设计和构建具有遗传水平编码功能的新系统。虽然部署基因网络的主要范式是在细胞底盘内,但合成基因网络也可以部署在无细胞环境中。无细胞基因网络的有前途的应用包括生物传感器,因为这些设备已被证明可对抗生物(埃博拉、寨卡和SARS-CoV-2病毒)和非生物(重金属、硫化物、杀虫剂和其他有机污染物)靶标。无孔系统通常以液体形式部署在反应容器内。然而,能够将这些反应嵌入物理基质中,可能有助于它们在更广泛的环境中得到更广泛的应用。为此,已经开发了在各种水凝胶基质中嵌入无细胞蛋白质合成(CFPS)反应的方法。有利于这项工作的水凝胶的关键特性之一是水凝胶材料的高水重构能力。此外,水凝胶具有对功能有益的物理和化学特性。水凝胶可以冷冻干燥以备后用,并重新水化以备后用。介绍了两种分步方案,用于在水凝胶中包含和测定CFPS反应。首先,CFPS系统可以通过细胞裂解物的再水化 入水凝胶中。然后可以诱导或表达水凝胶内的系统,以便通过水凝胶完全表达蛋白质。其次,细胞裂解物可以在聚合点引入水凝胶中,整个系统可以在稍后点用含有水凝胶内编码的表达系统诱导剂的水溶液冷冻干燥和再水化。这些方法有可能允许无细胞基因网络,赋予水凝胶材料感官能力,并有可能在实验室之外部署。

Introduction

合成生物学整合了不同的工程学科,以设计和制造基于生物的部件、设备和系统,这些部件、设备和系统可以执行自然界中没有的功能。大多数合成生物学方法仍然与活细胞结合。相比之下,无细胞合成生物学系统促进了前所未有的控制和设计自由度,提高了工程生物系统的灵活性并缩短了时间,同时消除了传统基于细胞的基因表达方法的许多限制1,2,3CFPS正被用于众多学科的越来越多的应用,包括构建人造细胞,原型遗传电路,开发生物传感器和生产代谢物4,5,6CFPS对于生产在活细胞中不易表达的重组蛋白也特别有用,例如易聚集蛋白,跨膜蛋白和有毒蛋白6,7,8

CFPS通常在液体反应中进行。然而,在某些情况下,这可能会限制它们的部署,因为任何无液体电池装置都必须包含在反应容器中。开发这里介绍的方法的基本原理是为将无细胞合成生物学设备嵌入水凝胶提供强大的方案,而不是作为蛋白质生产平台本身,而是允许使用水凝胶作为物理底盘,用于在实验室之外部署无细胞设备。使用水凝胶作为CFPS底盘有几个优点。水凝胶是聚合物材料,尽管含水量高(有时超过98%),但具有固体性质9,10,11。它们可用作糊剂、润滑剂和粘合剂,并存在于隐形眼镜、伤口敷料、海洋胶带、土壤改良剂和婴儿尿布911121314 等多种产品中。水凝胶作为药物输送载体也在积极研究9,15,16,17。水凝胶也可能具有生物相容性,可生物降解,并具有其自身的一些刺激反应9,18,19,20。因此,这里的目标是在分子生物学衍生的功能和材料科学之间创造协同作用。为此,已经努力将无细胞合成生物学与一系列材料相结合,包括胶原蛋白、拉蓬石、聚丙烯酰胺、纤维蛋白、PEG 肽和琼脂糖 11,21,22,以及涂覆玻璃、纸张和布的表面11,23,24与 CFPS 设备。这里介绍的方案展示了两种使用琼脂糖作为示例材料在宏观(即>1 mm)水凝胶基质中嵌入CFPS反应的方法。选择琼脂糖是因为其高吸水能力、受控的自凝胶性能和可调的机械性能 11,24,25,26。琼脂糖还支持功能性CFPS,比许多其他水凝胶替代品便宜,并且可生物降解,使其成为实验模型系统的有吸引力的选择。然而,这些方法先前已被证明适用于将CFPS嵌入一系列替代水凝胶中11。考虑到水凝胶的广泛应用和CFPS的功能,这里展示的方法可以为研究人员开发适合其自身目的的生物增强水凝胶材料提供基础。

在以前的研究中,尺寸范围为1μm至400μm的微凝胶系统已用于在浸没在反应缓冲液23,27,28,29,30,31中的水凝胶中进行CFPS。然而,将水凝胶浸没在CFPS反应缓冲液中的要求限制了它们本身作为材料部署的机会。此处介绍的方案允许CFPS反应在水凝胶内发生,而无需将凝胶浸没在反应缓冲液中。其次,使用宏观凝胶(尺寸在2毫米到10毫米之间)可以研究水凝胶与无细胞基因表达之间的物理相互作用。例如,使用该技术,可以研究水凝胶基质如何影响CFPS反应11以及CFPS反应如何影响水凝胶基质31。更大尺寸的水凝胶也允许开发新颖的生物可编程材料32。最后,通过将CFPS反应嵌入水凝胶中,还可以减少对塑料反应容器的需求。对于无电池传感器的部署,这比依赖塑料制品的设备具有明显的优势。综上所述,将CFPS反应嵌入水凝胶中为在实验室之外部署无细胞设备提供了几个优势。

这里介绍的方法的总体目标是允许在水凝胶基质内操作CFPS反应。在宏观尺度的水凝胶材料中嵌入无细胞蛋白质生产反应的两种不同方法得到了证明(图1)。在 方法A中,将CFPS组分引入冻干琼脂糖水凝胶中以形成活性系统。在 方法B中,熔融琼脂糖与CFPS反应组分混合以形成完整的CFPS水凝胶系统,然后将其冻干并储存直至需要。这些系统可以用一定体积的水或缓冲液和分析物再水化以开始反应。

这项研究使用基于 大肠杆菌 细胞裂解物的系统。这些是一些最受欢迎的实验性CFPS系统,因为 大肠杆菌 细胞裂解物制备简单,价格低廉,并且可以实现高蛋白质产量。细胞裂解物补充了进行转录和翻译所需的大分子组分,包括核糖体、tRNA、氨酰基-tRNA 合成酶以及起始、延伸和终止因子。具体而言,本文展示了使用 大肠杆菌 细胞裂解物在琼脂糖水凝胶中产生eGFP和mCherry,并使用酶标仪和共聚焦显微镜监测荧光的外观。微量滴定酶标仪的代表性结果可以在Whitfield等人31中看到,基础数据是公开的33。此外,使用共聚焦显微镜确认荧光蛋白在整个凝胶中的表达。本文中演示的两种协议允许在 材料中 组装和存储基于CFPS的遗传装置,最终目标是以支持现场部署的方式为无细胞基因电路的分布创造合适的物理环境。

Protocol

1. 细胞裂解物缓冲液和培养基制备 制备2x YT+P琼脂和培养基通过测量 16 g/L 胰蛋白胨、10 g/L 酵母提取物、5 g/L NaCl、40 mL/L 1 M K 2 HPO 4、22 mL/L 1 M KH2PO4 和 15 g/L 琼脂来制备 2x YT+P 琼脂。对于 2x YT+P 肉汤,遵循之前的成分,但省略琼脂。 通过高压灭菌 2x YT+P 进行灭菌。 S30A缓冲液的制备用 5.88 g/L 镁谷氨酸、12.195 g/…

Representative Results

该协议详细介绍了将CFPS反应嵌入水凝胶基质中的两种方法, 图1 提供了两种方法的示意图。这两种方法都适合冷冻干燥和长期储存。方法A是最常用的方法,原因有两个。首先,它已被证明是处理一系列水凝胶材料的最适用方法11。其次,方法A允许对基因结构进行平行测试。方法B更适合于制造优化的系统和现场部署。两种方案都允许一次性制备多个样品,?…

Discussion

这里概述了将基于 大肠杆菌 细胞裂解物的CFPS反应掺入琼脂糖水凝胶的两种方案。这些方法允许在整个材料中同时表达基因。该方案可适用于其他CFPS系统,除了此处详述的实验室制备的细胞裂解物外,还已成功使用市售的CFPS试剂盒进行。重要的是,该方案允许在没有外部液相的情况下进行基因表达。这意味着该系统是独立的,不需要无细胞反应槽。与以前在水凝胶内发生CFPS反应的方法不?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

作者非常感谢生物技术和生物科学研究委员会奖BB/V017551/1(S.K.,T.P.H.)和BB/W01095X/1(A.L.,T.P.H.)以及工程和物理科学研究委员会-国防科学和技术实验室奖EP/N026683/1(C.J.W.,A.M.B.,T.P.H.)的支持。支持本出版物的数据可在以下网址公开获得:10.25405/data.ncl.22232452。出于开放获取的目的,作者已将知识共享署名(CC BY)许可应用于任何作者接受的手稿版本。

Materials

Material
3-PGA Santa Cruz Biotechnology sc-214793B
Acetic Acid Sigma-Aldrich A6283
Agar Thermo Fisher Scientific A10752.22
Agarose Severn Biotech 30-15-50
Amino Acid Sampler Kit VWR BTRABR1401801
ATP Sigma-Aldrich A8937-1G
cAMP Sigma-Aldrich A9501-1G
Coenzyme A (CoA) Sigma-Aldrich C4282-100MG
CTP Alfa Aesar J14121.MC
DTT Thermo Fisher Scientific R0862
Folinic Acid Sigma-Aldrich F7878-100MG
GTP Carbosynth NG01208
HEPES Sigma-Aldrich H4034-25G
K-glutamate Sigma-Aldrich G1149-100G
Lysozyme Sigma-Aldrich L6876-1G
Mg-glutamate Sigma-Aldrich 49605-250G
NAD Sigma-Aldrich N6522-250MG
PEG-8000 Promega V3011
Potassium Hydroxide (KOH) Sigma-Aldrich 757551-5G
Potassium Phosphate Dibasic (K2HPO4) Sigma-Aldrich P3786-500G
Potassium Phosphate Monobasic (KH2PO4) Sigma-Aldrich RDD037-500G
Protease Inhibitor cocktail Sigma-Aldrich P2714-1BTL
Qubit Protein concentration kit Thermo Fisher Scientific A50668
Rossetta 2 DE 3 E.coli Sigma-Aldrich 71397-3
Sodium Chloride (NaCl) Sigma-Aldrich S9888-500G
Spermidine Sigma-Aldrich 85558-1G
Tryptone Thermo Fisher Scientific 211705
Tris Sigma-Aldrich GE17-1321-01
tRNA Sigma-Aldrich 10109541001
UTP Alfa Aesar J23160.MC
Yeast Extract Sigma-Aldrich Y1625-1KG
Equipment
1.5 mL microcentrifuge tubes Sigma-Aldrich HS4323-500EA
10K MWCO dialysis cassettes Thermo Fisher Scientific 66381
15 mL centrifuge tube Sarstedt 62.554.502
50 mL centrifuge bottles Sarstedt 62.547.254
500 mL centrifuge bottles Thermo Fisher Scientific 3120-9500
Alpha 1-2 LD Plus freeze-dryer Christ part no. 101521, 101522, 101527
Benchtop Centrifuge Thermo Fisher Scientific H-X3R
Black 384 well microtitre plates Fischer Scientific 66
Cuvettes Thermo Fisher Scientific 222S
Elga Purelab Chorus Elga #####
Eppendorf Microcentrifuge 5425R Eppendorf EP00532
High Speed Centrifuge Beckman Coulter B34183
JMP license SAS Institute 15
Magnetic Stirrer Fischer Scientific 15353518
Parafilm Amcor PM-966
Photospectrometer (Biophotometer) Eppendorf 16713
Pipettes and tips Gilson #####
Precision Balance Sartorius 16384738
Qubit 2.0 Fluorometer Thermo Fisher Scientific Q32866
Shaking Incubator Thermo Fisher Scientific SHKE8000
Sonic Dismembrator (Sonicator) Thermo Fisher Scientific 12893543
Static Incubator Sanyo MIR-162
Syringe and needles Thermo Fisher Scientific 66490
Thermo max Q8000 (Shaking Incubator) Thermo Fisher Scientific SHKE8000
Varioskan Lux platereader Thermo Fisher Scientific VLBL00GD1
Vortex Genie 2 Cole-parmer OU-04724-05
VWR PHenomenal pH 1100 L, ph/mv/°c meter VWR 662-1657

Riferimenti

  1. Lu, Y. Cell-free synthetic biology: Engineering in an open world. Synthetic and System Biotechnology. 2 (1), 23-27 (2017).
  2. Perez, J. G., Stark, J. C., Jewett, M. C. Cell-free synthetic biology: Engineering beyond the cell. Cold Spring Harbor Perspectives in Biology. 8 (12), e023853 (2016).
  3. Jiang, L., Zhao, J., Lian, J., Xu, Z. Cell-free protein synthesis enabled rapid prototyping for metabolic engineering and synthetic biology. Synthetic and System Biotechnology. 3 (2), 90-96 (2018).
  4. Kopniczky, M. B., et al. Cell-free protein synthesis as a prototyping platform for mammalian synthetic biology. ACS Synthetic Biology. 9 (1), 144-156 (2020).
  5. Pandi, A., Grigoras, I., Borkowski, O., Faulon, J. L. Optimizing cell-free biosensors to monitor enzymatic production. ACS Synthetic Biology. 8 (8), 1952-1957 (2019).
  6. Khambhati, K., Bhattacharjee, G., Gohil, N., Braddick, D., Kulkarni, V. S. V. Exploring the potential of cell-free protein synthesis for extending the abilities of biological systems. Frontiers in Bioengineering and Biotechnology. 7, 248 (2019).
  7. Focke, P. J., et al. Combining in vitro folding with cell free protein synthesis for membrane protein expression. Biochimica. 55 (30), 4212-4219 (2016).
  8. Fogeron, M. L., Lecoq, L., Cole, L., Harbers, M., Böckmann, A. Easy synthesis of complex biomolecular assemblies: wheat germ cell-free protein expression in structural biology. Frontiers in Molecular Biosciences. 8, 63958 (2021).
  9. Bashir, S., et al. Fundamental concepts of hydrogels: synthesis, properties, and their applications. Polymers. 12 (11), 2702 (2020).
  10. Loo, S. L., Vásquez, L., Athanassiou, A., Fragouli, D. Polymeric hydrogels-A promising platform in enhancing water security for a sustainable future. Advanced Material Interfaces. 8 (24), 2100580 (2021).
  11. Whitfield, C. J., et al. Cell-free protein synthesis in hydrogel materials. Chemical Communications. 56 (52), 7108-7111 (2020).
  12. Yao, H., et al. Design strategies for adhesive hydrogels with natural antibacterial agents as wound dressings: Status and trends. Materials Today Bio. 15, 100429 (2022).
  13. Musgrave, C. S. A., Fang, F. Contact lens materials: A materials science perspective. Materials. 12 (2), 261 (2019).
  14. Maher, A. J., Rana, A. G., Rawan, A. Recovery of hydrogel from baby diaper wastes and its application for enhancing soil irrigation management. Journal of Environmental Management. 239, 255-261 (2019).
  15. Vigata, M., Meinert, C., Hutmacher, D. W., Bock, N. Hydrogels as drug delivery systems: A review of current characterization and evaluation techniques. Pharmaceutics. 12 (12), 1188 (2020).
  16. Jacob, S., et al. Emerging role of hydrogels in drug delivery systems, tissue engineering and wound management. Pharmaceutics. 3 (3), 357 (2021).
  17. Senapati, S., et al. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduction and Targeted Therapy. 3, 7 (2018).
  18. Chen, Y., et al. A biocompatible, stimuli-responsive, and injectable hydrogel with triple dynamic bonds. Molecules. 25 (13), 3050 (2020).
  19. Shi, Q., et al. Bioactuators based on stimulus-responsive hydrogels and their emerging biomedical applications. NPG Asia Materials. 11, 64 (2019).
  20. Fan, M., Tan, H. Biocompatible conjugation for biodegradable hydrogels as drug and cell scaffolds. Cogent Engineering. 7 (1), 1736407 (2020).
  21. Byun, J. Y., Lee, K. H., Lee, K. Y., Kim, M. G., Kim, D. M. In-gel expression and in situ immobilization of proteins for generation of three-dimensional protein arrays in a hydrogel matrix. Lab on a Chip. 13 (5), 886-891 (2013).
  22. Zhou, X., Wu, H., Cui, M., Lai, S. N., Zheng, B. Long-lived protein expression in hydrogel particles: Towards artificial cells. Chemical Science. 9 (18), 4275-4279 (2018).
  23. Huang, A., et al. BiobitsTM explorer: A modular synthetic biology education kit. Science Advances. 4 (8), 5105 (2018).
  24. Jaramillo-Isaza, S., Alfonso-Rodriguez, C. A., Rios-Rojas, J. F., García-Guzmán, J. A. Dynamic mechanical analysis of agarose-based biopolymers with potential use in regenerative medicine. Materials Today Proceeding. 49, 16-22 (2022).
  25. Wang, B. X., Xu, W., Yang, Z., Wu, Y. An overview on recent progress of the hydrogels: from material resources, properties to functional applications. Macromolecular Rapid Communications. 43 (6), 2100785 (2022).
  26. Salati, M. A., et al. Agarose-based biomaterials: Opportunities and challenges in cartilage tissue engineering. Polymers. 12 (5), 1150 (2020).
  27. Buddingh, B. C., Van Hest, J. C. M. Artificial cells: Synthetic compartments with life-like functionality and adaptivity. Accounts of Chemical Research. 50 (4), 769-777 (2017).
  28. Kahn, J. S., et al. DNA microgels as a platform for cell-free protein expression and display. Biomacromolecules. 17 (6), 2019-2026 (2016).
  29. Yang, D., et al. Enhanced transcription and translation in clay hydrogel and implications for early life evolution. Scientific Reports. 3, 3165 (2013).
  30. Zhou, X., Wu, H., Cui, M., Lai, S. N., Zheng, B. Long-lived protein expression in hydrogel particles: Towards artificial cells. Chemical Science. 9 (18), 4275-4279 (2018).
  31. Whitfield, C. J., et al. Cell-free genetic devices confer autonomic and adaptive properties to hydrogels. BioRxiv. , (2019).
  32. Feng, L., Jianpu, T., Jinhui, G. D., Luo, D. Y. Polymeric DNA hydrogel: Design, synthesis and applications. Progress in Polymer Science. 98, 101163 (2019).
  33. Howard, T., et al. Datasets for Whitfield et al. 2020 Chemical Communications. , (2020).
  34. Banks, A. M., et al. Key reaction components affect the kinetics and performance robustness of cell-free protein synthesis reactions. Computational and Structural Biotechnology Journal. 20, 218-229 (2022).
  35. Sun, Z. Z., et al. Protocols for implementing an Escherichia coli-based TX-TL cell-free expression system for synthetic biology. Journal of Visualized Experiments. (79), e50762 (2013).
  36. Moore, S. J., et al. EcoFlex: A multifunctional MoClo kit for E. coli synthetic biology. ACS Synthetic Biology. 5 (10), 1059-1069 (2016).
  37. Benítez-Mateos, A. I., et al. Micro compartmentalized cell-free protein synthesis in hydrogel µ-channels. ACS Synthetic Biology. 9 (11), 2971-2978 (2020).
check_url/it/65500?article_type=t

Play Video

Citazione di questo articolo
Kavil, S., Laverick, A., Whitfield, C. J., Banks, A. M., Howard, T. P. Methods for Embedding Cell-Free Protein Synthesis Reactions in Macro-Scale Hydrogels. J. Vis. Exp. (196), e65500, doi:10.3791/65500 (2023).

View Video