Summary

Using Avian Skin Explants to Study Tissue Patterning and Organogenesis

Published: September 15, 2023
doi:

Summary

Here we describe protocols for three types of avian embryonic skin explant cultures that can be used to examine tissue interactions, 4D imaging timelapse movie (3D plus time), global or local perturbation of molecular function, and systems biology characterization.

Abstract

The developing avian skin during embryogenesis is a unique model that can provide valuable insights into tissue patterning. Here three variations on skin explant cultures to examine different aspects of skin development are described. First, ex vivo organ cultures and manipulations offer researchers opportunities to observe and study the development of feather buds directly. Skin explant culture can grow for 7 days enabling direct analysis of cellular behavior and 4D imaging at intervals during this growth period. This also allows for physical and molecular manipulations of culture conditions to visualize tissue response. For example, growth factor-coated beads can be applied locally to induce changes in feather patterning in a limited area. Alternatively, viral transduction can be delivered globally in the culture media to up or downregulate gene expression. Second, the skin recombination protocol allows researchers to investigate tissue interactions between the epidermis and mesenchyme that are derived from different skin regions, different life stages, or different species. This affords an opportunity to test the time window in which the epithelium is competent to respond to signals and its ability to form different skin appendages in response to signals from different mesenchymal sources. Third, skin reconstitution using dissociated dermal cells overlaid with intact epithelium resets skin development and enables the study of the initial processes of periodic patterning. This approach also enhances our ability to manipulate gene expression among the dissociated cells before creating the reconstituted skin explant. This paper provides the three culture protocols and exemplary experiments to demonstrate their utility.

Introduction

Avian embryo skin development is an excellent model for studying the mechanisms of morphogenesis because of the distinct patterns and the accessibility to microsurgery and manipulation1,2. However, evaluating cellular and molecular events in intact tissues can be difficult because the presence of extraneous tissues can complicate microscopic observations. Furthermore, the ability to manipulate gene expression to test their role in skin morphogenesis is not always a simple task. We find we can test gene functions using retroviral transduction with a higher success rate using skin explant models. Here we discuss the advantages of three skin explant models that have been developed.

Avian embryonic skin culture is a powerful system to assess cell behavior, gene regulation, and function during skin feather bud development3,4,5,6. It allows for the evaluation of the molecular mechanisms of feather bud development through the global addition of growth factors placed in the culture media or their local release from growth factor-coated beads. Developmental regulatory genes can also be manipulated using viral gene transduction of intact or dominant negative forms for functional studies evaluating their roles in specific morphogenetic events 7,8.

Avian epithelialmesenchymal recombination culture enables investigators to determine the contributions of each skin component during the early stages of skin morphogenesis. Rawles' use of this approach revealed that interactions between the mesenchyme and epithelium are essential to forming skin appendages9. The mesenchyme can form condensations and the epithelium is needed to induce and maintain mesenchymal condensation formations2. Later, this approach was used to assess why Scaleless chickens fail to form feathers. The defect was discovered to be in mesenchyme10. Dhouailly performed tissue epithelial-mesenchymal recombination studies in embryos from different species. These studies provided developmental and evolutionary insights into epithelial-mesenchymal communications that promote skin morphogenesis3.

This study was used to better understand factors that control feather growth. The method also improves the visualization of cellular and molecular events involved in skin patterning that take place during feather initiation, development, and elongation along the anterior-posterior axis. When the epithelium is separated from the mesenchyme and the two components are then recombined, new interactions re-establish skin patterning. This approach allows us to evaluate mesenchymal inducing signals and epithelial competence molecules that enable the epidermis to respond to the mesenchymal signals11. The subsequent downstream molecular expression that is required for feather bud development and pattern formation can also be examined. These studies have established that the location of buds is controlled by the mesenchyme. Rotation of the epithelium 90o before recombination with the mesenchyme demonstrates that the direction of feather bud elongation is controlled by the epithelium. This method was essential for us to study the molecular mechanism regulating feather bud orientation12.

Avian skin reconstitution culture, in which the skin mesenchyme is dissociated to single cells before plating at high cell density and overlaid with intact epithelium, resets dermal cells to a primordial state. The explant then self-organizes to form a new periodic pattern independent of the previous cues13. This skin reconstitution model can be used to study the initial processes of feather periodic patterning. We used this approach to explore how modulating the ratio of mesenchymal cells to a single piece of epithelium can influence the size or number of feather buds. The number of buds was found to increase but not the size of buds as the ratio of mesenchymal cells increased. Another advantage to this approach is that mesenchymal cell viral transduction shows higher efficiency than in the other two culture conditions and can produce more obvious phenotypes.

Protocol

1. Chicken skin explant culture (Figure 1) Incubate fertilized chicken eggs in a humidified incubator at 38 °C and stage them according to Hamburger and Hamilton14. At stage 28 (~E5.5), the limb's second digit and third toe are longer than the others; three digits and four toes are distinct. At stage 29 (~E6), the wing is bent at the elbow; the second digit is distinctly lon…

Representative Results

Skin explant cultures Feather bud development from ex vivo skin organ cultures can directly be observed under the microscope. Using the skin explant culture model of chicken stage 30 dorsal skin, the placodes are visible along the midline. The morphogenetic front then gradually propagates laterally toward the skin periphery with the formation of new feather primordia. These feather primordia will develop into short feather buds after 2 days in culture and long feather buds after 4 day…

Discussion

Tissue recombination provides an assay to explore the unique contributions of the epithelium and mesenchyme. In chickens, feathers begin to develop at embryonic day 7 (E7) while scales begin at E9. When E9 scale mesenchyme is recombined with E7 feather epithelium, the recombined tissue forms scales, and when E7 feather mesenchyme is recombined with E9 scale epithelium feathers are formed11. These studies have demonstrated that the mesenchyme controls the pattern formation spacing and organ identit…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This work is supported by NIH NIAMS grant R37 AR 060306, R01 AR 047364, and RO1 AR078050. The work is also supported by a collaborative research contract between USC and China Medical University in Taiwan. We thank the USC BISC 480 Developmental Biology 2023 class for successfully testing this avian skin culture protocol during several lab modules.

Materials

6-well culture dish  Falcon REF 353502 Air-Liquid Interface (ALI) Cultures  
Cell culture inset  Falcon REF 353090. 0.4 µm Transparent PET Membrane
Collagenase Type 1 Worthington Biochemical LS004196
Dulbecco’s modified Eagle’s medium  Corning 10-013-CV 4.5 g/L glucose
Ethylenediaminetetraacetic acid disodium salt dihydrate (EDTA) Sigma-Aldrich E5134
Fetal bovine serum ThermoFisher 16140-071
Glucose Sigma-Aldrich G8270
Hanks’s buffered saline solution Gibco 14170-112 No calcium, no magnesium
Penicillin/streptomycin  Gibco 15-140-122
Pogassium phosphate monobasic (KH2PO4) Sigma-Aldrich P5379
Potassium chloride (KCl) Sigma-Aldrich P9333
Sodium bicarbonate (NaHCO3) Sigma-Aldrich S6014
Sodium chloride (Nacl) EMD  CAS 7647-14-5
Sodium phosphate monobasic (NaH2PO4) Sigma-Aldrich S0751
Trypsin Gibco 27250-042

Riferimenti

  1. Lucas, A. M., Stettenheim, P. R. Avian anatomy: Integument part I and part II. Agriculture Handbook. 362, (1972).
  2. Sengel, P. . In Morphogenesis of Skin, l-277. , (1976).
  3. Dhouailly, D., Wilehm Roux, . Formation of cutaneous appendages in dermo-epidermal recombinations between reptiles, birds and mammals. Archives of Developmental Biology. 177 (4), 323-340 (1975).
  4. Jiang, T. -. X., Chuong, C. -. M. Mechanism of feather morphogenesis: I. Analyses with antibodies to Adhesion Molecules Tenascin, N-CAM and Integrin. Biologia dello sviluppo. 150 (1), 82-98 (1992).
  5. Li, A., et al. Shaping organs by a Wnt / Notch / non-muscle myosin module which orients feather bud elongation. Proceedings of the National Academy of Sciences, USA. 110 (16), E1452-E1461 (2013).
  6. Li, A., et al. Calcium oscillations coordinate feather mesenchymal cell movement by SHH dependent modulation of gap junction networks. Nature Communications. 9 (1), 5377 (2018).
  7. Ting-Berreth, S. A., Chuong, C. M. Local delivery of TGF beta2 can restore epithelium dependent organization of mesenchymal condensation during skin appendage morphogenesis. Biologia dello sviluppo. 179 (2), 347-359 (1996).
  8. Widelitz, R. B., Jiang, T. -. X., Noveen, A., Chen, C. -. W. J., Chuong, C. -. M. FGF induces new feather buds from developing avian skin. Journal of Investigation Dermatology. 107 (6), 797-803 (1996).
  9. Rawles, M. E. Tissue interactions in scale and feather development as studies in dermal-epidermal recombinations. Journal of Embryology and Experimental Morphology. 11, 765-789 (1963).
  10. McAleese, S. R., Sawyer, R. H. Correcting the phenotype of the epidermis from chick embryos homozygous for the gene scaleless (sc/sc). Science. 214 (4524), 1033-1034 (1981).
  11. Chuong, C. M., Widelitz, R. B., Ting-Berreth, S., Jiang, T. X. Early events during avian skin appendage regeneration: dependence on epithelial-mesenchymal interaction and order of molecular reappearance. J Invest Dermatol. 107 (4), 639-646 (1996).
  12. Jiang, T. X., et al. Global feather orientations changed by electric current. iScience. 24 (6), 102671 (2021).
  13. Jiang, T. X., Jung, H. S., Widelitz, R. B., Chuong, C. M. Self-organization of periodic patterns by dissociated feather mesenchymal cells and the regulation of size, number and spacing of primordia. Development. 126 (22), 4997-5009 (1999).
  14. Hamburger, V., Hamilton, H. A series of normal stages in the development of the chick embryo. Journal of Morphology. 188, 49-92 (1951).
  15. Chen, Y. P., et al. Conservation of early odontogenic signaling pathway in Aves. Proceedings of the National Academy of Sciences, USA. 97 (18), 10044-10049 (2000).
  16. Chuong, C. -. M., Ting, S. A., Widelitz, R. B., Lee, Y. S. Mechanism of Skin Morphogenesis: II. Retinoic acid gradient modulates axis orientation and phenotypes of skin appendages. Development. 115 (3), 839-852 (1992).
  17. Noveen, A., Jiang, T. -. X., Chuong, C. -. M. Protein kinase A and protein kinase C modulators have reciprocal effects on mesenchymal condensation during skin appendage morphogenesis. Biologia dello sviluppo. 171 (2), 677-693 (1995).
  18. Wu, X. S., et al. Self-assembly of biological networks via adaptive patterning revealed by avian intradermal muscle network formation. Proceedings of the National Academy of Sciences, USA. 116 (22), 10858-10867 (2019).
check_url/it/65580?article_type=t

Play Video

Citazione di questo articolo
Jiang, T., Secor, M., Lansford, R., Widelitz, R. B., Chuong, C. M. Using Avian Skin Explants to Study Tissue Patterning and Organogenesis. J. Vis. Exp. (199), e65580, doi:10.3791/65580 (2023).

View Video