Summary

使用诱导型成骨细胞谱系特异性 Stat3 敲除小鼠研究正畸牙齿移动过程中的牙槽骨重塑

Published: July 21, 2023
doi:

Summary

本研究提供了一种使用诱导型成骨细胞谱系特异性 Stat3 敲除小鼠研究正畸力下骨重塑的方案,并描述了分析正畸牙齿移动过程中牙槽骨重塑的方法,从而揭示了骨骼机械生物学。

Abstract

牙槽骨,周转率高,是人体重塑最活跃的骨骼。正畸牙齿移动 (OTM) 是一种常见的人工过程,即响应机械力进行牙槽骨重塑,但其潜在机制仍然难以捉摸。由于动物模型相关的限制,以往的研究无法揭示任何时间和空间骨重塑的确切机制。信号转导和转录激活因子 3 (STAT3) 在骨代谢中很重要,但其在 OTM 期间成骨细胞中的作用尚不清楚。为了提供 体内 证据证明 STAT3 在特定时间点参与 OTM,特别是在 OTM 期间参与细胞,我们生成了他莫昔芬诱导的成骨细胞谱系特异性 Stat3 敲除小鼠模型,施加正畸力,并分析牙槽骨表型。

显微计算机断层扫描(Micro-CT)和立体显微镜用于访问OTM距离。组织学分析选择位于上颌骨横截面第一磨牙(M1)三个根部内的区域作为感兴趣区域(ROI),评估成骨细胞和破骨细胞的代谢活性,表明正畸力对牙槽骨的影响。简而言之,我们提供了一种使用诱导型成骨细胞谱系特异性 Stat3 敲除小鼠来研究正畸力下的骨重塑的方案,并描述了分析 OTM 期间牙槽骨重塑的方法,从而为骨骼机械生物学提供了新的思路。

Introduction

众所周知,根据沃尔夫定律1,2骼在一生中不断进行重建以响应机械力。适当的机械刺激,如重力和日常锻炼,通过刺激成骨细胞和破骨细胞来维持骨量和力量,并防止骨质流失。负责骨吸收的破骨细胞 3,4,5,6,7 和负责骨形成的成骨细胞 8,9,10 维持骨稳态并在骨重塑的生物过程中共同发挥作用。相反,在没有负荷刺激的情况下,如宇航员在长期微重力下,骨骼会遭受 10% 的骨密度损失,从而增加骨质疏松症的风险11,12。此外,非侵入性和方便的机械疗法,包括正畸和牵张成骨术,已成为骨骼疾病的治疗方法13,14。所有这些都表明,机械力在维持骨骼质量和数量方面起着至关重要的作用。最近的研究通常使用耗时的模型(例如跑轮和尾部悬架测试)分析响应机械负载的骨骼重塑,这些模型通常需要 4 周或更长时间来模拟力加载或卸载15,16。因此,需要一种方便高效的动物模型来研究受力载荷驱动的骨重塑。

牙槽骨在骨重塑方面最为活跃,周转率高17。牙齿正畸移位 (OTM) 是咬合不正的常见治疗方法,是一种响应机械力的牙槽骨重塑的人工过程。然而,与其他实验周期较长的模型相比,诱导快速骨重塑的OTM18也是一种节省时间的研究机械力对骨重塑影响的方法。因此,OTM是研究机械刺激下骨重塑的理想模型。值得注意的是,牙槽骨重塑的机制往往具有时效性,需要观察建模后某些时间点牙槽骨重塑的变化。具有DNA重组的时空调控和组织特异性的双重优势,诱导条件基因敲除小鼠模型是OTM研究的合适选择。

传统上,OTM介导的牙槽骨重塑分为涉及骨形成的张力区和涉及骨吸收的压力区19,20,21这更详细但难以调节。此外,Yuri 等人报告说,OTM 中的骨形成时间在拉伸和压缩侧不同22。此外,先前的一项研究表明,第一磨牙可以在正畸力下启动上颌牙槽骨的广泛重塑,而正畸力不受张力和压力区的限制23。因此,我们选择位于上颌骨横截面 M1 三个根部内的区域作为感兴趣区域 (ROI),并描述了评估同一区域成骨细胞和破骨细胞活性的方法,以评估 OTM 下的牙槽骨重塑。

作为一种核转录因子,信号转导和转录激活因子 3 (STAT3) 已被证明在骨稳态中至关重要24,25。先前的研究报道了 Stat3 突变小鼠的低骨密度和复发性病理性骨折26,27。我们之前的研究表明,Osx+ 成骨细胞中 Stat3 的缺失会导致颅面畸形和骨质疏松症,以及自发性骨折28。最近,我们提供了诱导型成骨细胞特异性 Stat3 缺失小鼠模型 (Col1α2CreERT2;Stat3 fl/fl,以下称为 Stat3Col1α2ERT2),STAT3 在介导正畸力驱动牙槽骨重塑的影响中至关重要29.在这项研究中,我们提供了使用诱导型成骨细胞谱系特异性 Stat3 敲除小鼠研究正畸力下骨重塑的方法和方案,并描述了分析 OTM 过程中牙槽骨重塑的方法,从而阐明骨骼力学生物学。

Protocol

本文所述涉及动物的所有方法均经上海交通大学医学院附属第九人民医院伦理委员会(第82101048号)批准。 1. 建立诱导型成骨细胞谱系特异性 Stat3 敲除小鼠 注: Stat3 fl/fl小鼠是商业获得的; Col1α2CreERT2菌株是一份礼物(详见 材料表 )。为所有动物提供标准化的实验室颗粒食物和水以及标准的实…

Representative Results

使用该协议,我们建立了诱导型成骨细胞谱系特异性 Stat3 敲除小鼠 (Stat3Col1α2ERT2) 模型,以检查 STAT3 缺失对正畸力驱动的牙槽骨重塑的影响(图 1A、B)。通过牙槽骨的免疫荧光染色证实成骨细胞中的STAT3缺失(图1C)。 立体显微镜检查显示,WT小鼠在d4、d7和d10处的OTM距离增加。然而,在 Stat…

Discussion

由于咬合不正是影响呼吸、咀嚼、说话甚至外观的最常见口腔疾病之一,因此对正畸的需求与日俱增,发病率从 70% 上升到 93%,根据之前的流行病学调查31,32。如何加速牙槽骨重塑,安全地提高正畸治疗效率,成为该领域的热点话题;因此,有必要阐明OTM驱动的牙槽骨重塑机制。在以往的研究中,研究人员利用体内药物注射来研究动物模型中OTM的?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了中国国家自然科学基金(81870740、82071083、82271006、82101048、81800949)的部分资助;上海市自然科学基金资助项目(21ZR1436900, 22ZR1436700);上海市学术/技术研究带头人计划(20XD1422300);上海发展局临床研究计划(SHDC2020CR4084);上海交通大学医学院附属第九人民医院交叉科研基金(JYJC201902、JYJC202116);上海地方高水平高校创新研究团队(SSMUZLCX20180501);研究学科基金编号上海交通大学医学院附属第九人民医院、上海交通大学口腔医学院KQYJXK2020;上海交通大学医学院附属第九人民医院原勘探项目(JYYC003);上海交通大学医学院二百人才工程;上海交通大学医学院生物材料与再生医学研究院合作研究项目(2022LHB02);上海交通大学医学院附属第九人民医院生物样本库项目(YBKB201909,YBKB202216)。

Materials

1x PBS Beijing Solarbio Science & Technology Co.,Ltd.  P1020
4% paraformaldehyde Wuhan Servicebio Technology Co., Ltd. G1101
Alizarin red Sigma-Aldrich A5533
Anti-CTSK antibody Santa Cruz sc-48353
Anti-OPN antibody R&D Systems, Minneapolis, MN, USA AF808
Calcein Sigma-Aldrich C0875
Closed-coil springs Innovative Material and Devices, Shanghai, China CS1006B
Col1α2CreERT2 mice A gift from Bin Zhou, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.
Dexmedetomidine hydrochloride Orionintie Corporation, Orion Pharma Espoo site
EDTA Beyotime Biotechanology ST069
Embedding tanks Citotest Labware Manufacturing Co., Ltd 80106-1100-16
Ethanol Sinopharm Chemical Reagent Co., Ltd. 100092183
ImageJ software NIH, Bethesda, MD, USA
Mounting medium with DAPI Beyotime Biotechanology P0131
Mouse dissection platform Shanghai Huake Experimental Devices and Materials Co., Ltd. HK105
Paraffin Sangon biotech Co., Ltd. A601889
Primers for genotyping Stat3 F-TTGACCTGTGCTCCTACAAAAA; Stat3 R-CCCTAGATTAGGCCAGCACA; Cre F-CGATGCAACGAGTGATGAGG; Cre R-CGCATA ACCAGTGAAACAGC
Protease K Sigma-Aldrich 539480
Self-curing restorative resin 3M ESPE, St. Paul, MN, USA 712-035
Stat3fl/fl mice GemPharmatech Co., Ltd D000527
Tamoxifen Sigma-Aldrich T5648
TRAP staining kit Sigma-Aldrich 387A
Tris-HCl Beyotime Biotechanology ST780
Universal tissue fixative Wuhan Servicebio Technology Co., Ltd. G1105
Xylene Sinopharm Chemical Reagent Co., Ltd. 10023418
Zoletil VIRBAC 

Riferimenti

  1. Frost, H. M. The Utah paradigm of skeletal physiology: an overview of its insights for bone, cartilage and collagenous tissue organs. Journal of Bone and Mineral Metabolism. 18 (6), 305-316 (2000).
  2. Frost, H. M. Wolff’s Law and bone’s structural adaptations to mechanical usage: an overview for clinicians. The Angle Orthodontist. 64 (3), 175-188 (1994).
  3. Gothlin, G., Ericsson, J. L. The osteoclast: review of ultrastructure, origin, and structure-function relationship. Clinical Orthopaedics and Related Research. (120), 201-231 (1976).
  4. Feng, X., Teitelbaum, S. L. Osteoclasts: New Insights. Bone Research. 1 (1), 11-26 (2013).
  5. Boyle, W. J., Simonet, W. S., Lacey, D. L. Osteoclast differentiation and activation. Nature. 423 (6937), 337-342 (2003).
  6. Zhu, L. X., et al. Osteoclast-mediated bone resorption is controlled by a compensatory network of secreted and membrane-tethered metalloproteinases. Science Translational Medicine. 12 (529), eaaw6143 (2020).
  7. Dai, Q., et al. A RANKL-based osteoclast culture assay of mouse bone marrow to investigate the role of mTORC1 in osteoclast formation. Journal of Visualized Experiments: JoVE. (133), 56468 (2018).
  8. Karsenty, G., Kronenberg, H. M., Settembre, C. Genetic control of bone formation. Annual Review of Cell and Developmental Biology. 25, 629-648 (2009).
  9. Long, F. Building strong bones: molecular regulation of the osteoblast lineage. Nature Reviews. Molecular Cell Biology. 13 (1), 27-38 (2011).
  10. Harada, S., Rodan, G. A. Control of osteoblast function and regulation of bone mass. Nature. 423 (6937), 349-355 (2003).
  11. Lang, T., et al. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. Journal of Bone and Mineral Research. 19 (6), 1006-1012 (2004).
  12. Sibonga, J. D. Spaceflight-induced bone loss: is there an osteoporosis risk. Current Osteoporosis Reports. 11 (2), 92-98 (2013).
  13. Yang, Y., et al. Administration of allogeneic mesenchymal stem cells in lengthening phase accelerates early bone consolidation in rat distraction osteogenesis model. Stem Cell Research and Therapy. 11 (1), 129 (2020).
  14. Huang, C., Holfeld, J., Schaden, W., Orgill, D., Ogawa, R. Mechanotherapy: revisiting physical therapy and recruiting mechanobiology for a new era in medicine. Trends in Molecular Medicine. 19 (9), 555-564 (2013).
  15. Shu, H. S., et al. Tracing the skeletal progenitor transition during postnatal bone formation. Cell Stem Cell. 28 (12), 2122-2136 (2021).
  16. Wang, X., et al. miR-214 targets ATF4 to inhibit bone formation. Nature Medicine. 19 (1), 93-100 (2013).
  17. Huja, S. S., Fernandez, S. A., Hill, K. J., Li, Y. Remodeling dynamics in the alveolar process in skeletally mature dogs. The Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology. 288 (12), 1243-1249 (2006).
  18. Jin, A., et al. FOXO3 mediates tooth movement by regulating force-induced osteogenesis. Journal of Dental Research. 101 (2), 196-205 (2022).
  19. Bumann, A., Carvalho, R. S., Schwarzer, C. L., Yen, E. H. Collagen synthesis from human PDL cells following orthodontic tooth movement. European Journal of Orthodontics. 19 (1), 29-37 (1997).
  20. Kitaura, H., et al. Effect of cytokines on osteoclast formation and bone resorption during mechanical force loading of the periodontal membrane. The Scientific World Journal. 2014, 617032 (2014).
  21. Lu, W., et al. Sclerostin injection enhances orthodontic tooth movement in rats. Archives of Oral Biology. 99, 43-50 (2019).
  22. Seki, Y., et al. Differentiation ability of Gli1(+) cells during orthodontic tooth movement. Bone. 166, 116609 (2023).
  23. Gong, X. Y., et al. Local orthodontic force initiates widespread remodelling of the maxillary alveolar bone. Australasian Orthodontic Journal. 36 (2), 175-183 (2020).
  24. Liu, Y., et al. STAT3 and its targeting inhibitors in osteosarcoma. Cell Proliferation. 54 (2), e12974 (2021).
  25. Guadagnin, E., Mazala, D., Chen, Y. W. STAT3 in skeletal muscle function and disorders. International Journal of Molecular Sciences. 19 (8), 2265 (2018).
  26. Saikia, B., et al. Clinical profile of hyper-IgE syndrome in India. Frontiers in Immunology. 12, 626593 (2021).
  27. van de Veen, W., et al. Impaired memory B-cell development and antibody maturation with a skewing toward IgE in patients with STAT3 hyper-IgE syndrome. Allergy. 74 (12), 2394-2405 (2019).
  28. Zhou, S. R., et al. STAT3 is critical for skeletal development and bone homeostasis by regulating osteogenesis. Nature Communications. 12 (1), 6891 (2021).
  29. Gong, X. Y., et al. Osteoblastic STAT3 is crucial for orthodontic force driving alveolar bone remodeling and tooth movement. Journal of Bone and Mineral Research. 38 (1), 214-227 (2023).
  30. Yang, Y., et al. Skeletal phenotype analysis of a conditional Stat3 deletion mouse model. Journal of Visualized Experiments: JoVE. (161), 61390 (2020).
  31. Egic, B. Prevalence of orthodontic malocclusion in schoolchildren in Slovenia. A prospective aepidemiological study. European Journal of Paediatric Dentistry. 23 (1), 39-43 (2022).
  32. Gois, E. G., et al. Incidence of malocclusion between primary and mixed dentitions among Brazilian children A 5-year longitudinal study. The Angle Orthodontist. 82 (3), 495-500 (2012).
  33. Yang, F., et al. Effects Of triptolide on tooth movement and root resorption in rats. Drug Design, Development and Therapy. 13, 3963-3975 (2019).
  34. Wang, C., Sun, H. Progress in gene knockout mice. Sheng Wu Gong Cheng Xue Bao. 35 (5), 784-794 (2019).
  35. Cao, H., et al. Force-induced Adrb2 in periodontal ligament cells promotes tooth movement. Journal of Dental Research. 93 (11), 1163-1169 (2014).
check_url/it/65613?article_type=t

Play Video

Citazione di questo articolo
Liu, Y., Sun, S., Jiang, Z., Gong, X., Yang, Y., Zhu, Y., Xu, H., Jin, A., Huang, X., Gao, X., Lu, T., Liu, J., Wang, X., Dai, Q., Jiang, L. Using Inducible Osteoblastic Lineage-Specific Stat3 Knockout Mice to Study Alveolar Bone Remodeling During Orthodontic Tooth Movement. J. Vis. Exp. (197), e65613, doi:10.3791/65613 (2023).

View Video