Summary

3D生物打印光可调水凝胶研究成纤维细胞活化

Published: June 30, 2023
doi:

Summary

本文介绍了如何 3D 生物打印光可调水凝胶来研究细胞外基质硬化和成纤维细胞活化。

Abstract

光可调水凝胶可以响应光照在空间和时间上发生转变。将这些类型的生物材料纳入细胞培养平台并动态触发变化,例如增加微环境硬度,使研究人员能够模拟纤维化疾病进展过程中发生的细胞外基质 (ECM) 变化。本文提出了一种用于3D生物打印能够在明胶支持浴内进行两次连续聚合反应的光电可调水凝胶生物材料的方法。通过调节支持浴的pH值来适应悬浮水凝胶的自由形式可逆嵌入(FRESH)生物打印技术,以促进Michael加成反应。首先,将含有聚乙二醇-α-甲基丙烯酸酯(PEGαMA)的生物墨水与细胞可降解交联剂进行化学计量反应,形成软水凝胶。这些软水凝胶随后暴露在光引发剂和光下,以诱导未反应基团的均聚化并使水凝胶变硬。该协议涵盖水凝胶合成、3D 生物打印、光强化和终点表征,以评估 3D 结构内的成纤维细胞活化。这里介绍的方法使研究人员能够3D生物打印各种经历pH催化聚合反应的材料,并可用于设计组织稳态,疾病和修复的各种模型。

Introduction

3D生物打印是一项变革性技术,使研究人员能够精确地将细胞和生物材料沉积在3D体积内,并重建生物组织的复杂分层结构。在过去的十年中,3D生物打印的进步已经创造了跳动的人类心脏组织1,肾脏组织的功能模型2,肺内气体交换模型3,以及用于癌症研究的肿瘤模型4。嵌入式 3D 生物打印技术的发明,例如悬浮水凝胶的自由形式可逆嵌入 (FRESH) 生物打印,使得在 3D 中再现复杂的软组织结构(如肺血管5 甚至人类心脏6 )成为可能。 FRESH 3D 生物打印有助于通过挤出到剪切稀化支撑槽中逐层打印柔软和低粘度的生物墨水。支撑浴由紧密堆积的明胶微粒等材料组成,该微粒充当宾厄姆塑料,并在打印后保持生物墨水的预期形状和结构。一旦打印的结构凝固,就可以通过将温度升高到37°C来溶解支撑浴7

最近的一篇评论文章总结了使用FRESH技术在各种出版物中进行3D生物打印的材料。这些天然来源的材料范围从 I 型胶原蛋白到甲基丙烯酸化透明质酸,代表了几种不同的凝胶机制7。使用这种3D生物打印技术进行的大多数研究都采用静态生物材料,这些材料不会因外部刺激而改变。动态光可调水凝胶生物材料已被我们的实验室和其他实验室使用8,9,10,11,12来模拟各种纤维化疾病。与静态生物材料不同,光可调生物墨水允许创建具有较低弹性模量值的软化模型,然后进行硬化以探索细胞对微环境硬化增加的反应。

纤维化疾病的特征是细胞外基质的产生增加,可导致瘢痕形成和硬化13。组织硬化会引发阻生组织的进一步损伤和破坏,导致永久性器官损伤甚至死亡;纤维化疾病占全球死亡人数的三分之一。成纤维细胞在这种疾病状态下产生过量和异常的细胞外基质14,15。成纤维细胞增殖增加和细胞外基质沉积进一步使组织变硬并激活促纤维化正反馈回路16,17,18,19。研究成纤维细胞活化对于了解纤维化疾病至关重要。在这里,我们将人类肺动脉高压(PAH)作为一种纤维化疾病的一个例子,其中使用3D生物打印模拟血管的3D几何形状非常重要,并介绍了光可调水凝胶的动态硬化能力。多环芳烃是一种主要肺动脉压力超过正常水平并对心脏施加压力,增加人肺动脉外膜成纤维细胞 (HPAAF) 活化并使血管组织变硬的疾病16,17,18,19。光可调聚乙二醇-α-甲基丙烯酸酯 (PEGαMA) 生物墨水配方允许构建体的时间硬化,并有助于模拟健康组织和疾病进展 5,8,9,10。利用这一独特特征能够量化 HPAAF 响应 3D 微环境硬化的激活和增殖,并可能为参与该疾病的细胞机制提供有价值的见解。这里描述的协议将允许研究人员创建3D模型,以概括疾病进展或组织修复期间细胞外微环境的变化,并研究成纤维细胞活化。

Protocol

1. PEGαMA的合成与表征 注:聚乙二醇-α-甲基丙烯酸酯(PEGαMA)的合成改编自Hewawasam 等人, 并在无水分条件下进行9。 称量反应物。注:例如,称取 5 g 10 kg/mol 8 臂 PEG-羟基 (PEG-OH) 和 0.38 g 氢化钠 (NaH)(参见 材料表)。 向 250 mL 舒伦克烧瓶中加入搅拌棒,并用氩气吹扫。 将PEG-OH溶解在舒伦克烧瓶…

Representative Results

该协议描述了如何在支撑浴中3D生物打印光可调水凝胶,以创建能够动态和时间加固的结构,以研究模拟人体组织的几何形状中的成纤维细胞活化。首先,该协议解释了如何合成PEGαMA,这是该光电互导聚合物系统的骨架。核磁共振(NMR)波谱测量显示PEGαMA功能化成功率为96.5%(图1)。对于此程序,90%或更高的功能化值是可以接受的。接下来,详细介绍了如何创建空心圆柱体…

Discussion

响应受控光照的双阶段聚合反应可以通过空间和时间控制使生物材料变硬。一些研究利用这种技术来评估各种平台中的细胞-基质相互作用 5,8,9,10,11,21,22,23。更具体地说,光掩模或双光子激发方法?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

作者要感谢 Adam Feinberg 博士(卡内基梅隆大学)和主持 3D 生物打印开源研讨会的人员。这些人使学习FRESH生物打印技术成为可能,并构建了用于这些研究的3D生物打印机。此外,作者要感谢 Biorender.com,它被用来制作本手稿中的数字。这项工作得到了多个团体或资金来源的支持,包括罗斯社区基金会(DDH 和 CMM)、科罗拉多州肺血管疾病研究奖(DDH 和 CMM)、1941401 奖下的国家科学基金会 (CMM)、W81XWH-20-1-0037 (CMM) 下陆军部、美国国立卫生研究院国家癌症研究所 R21 CA252172 奖 (CMM)、 科罗拉多大学安舒茨医学院的卢德曼家庭女性健康研究中心(DDH 和 CMM)、美国国立卫生研究院国家心肺血液研究所获得 R01 HL080396 (CMM)、R01 HL153096 (CMM)、F31 HL151122 (DDH) 和 T32 HL072738(DDH 和 AT)奖项。

Materials

AccuMax Radiometer/Photometer Kit Spectronics Corporation XPR-3000 To measure light intensity, used for photostiffening
Acetic Acid  Fisher Scientific BP2401-500 Used during PEGaMA synthesis
Acetone Fisher Scientific A184 Used with the cryosections
ActinGreen 488 ReadyProbes Fisher Scientific R37110 Used for staining
Aluminum Foil Reynolds F28028
Anhydrous Tetrahydrofuran (THF) Sigma-Aldrich 401757-1L Used during PEGaMA synthesis
Argon Compressed Gas Airgas AR R300 Used during PEGaMA synthesis
8 Arm Poly(ethylene glycol)-hydroxyl (PEG-OH) JenKem Technology 8ARM-PEG-10K Used during PEGaMA synthesis
365 nm Bandpass Filter Edmund Optics 65-191 Used for photostiffening
Bovine Serum Albumin (BSA) Fisher Scientific BP9700-100 Used during staining process
Buchner Funnel Quark Glass QFN-8-14 Used during PEGaMA synthesis
Calcein AM Invitrogen 65-0853-39 Used during staining process
Celite 545 (Filtration Aid) EMD Millipore CX0574-1 Used during PEGaMA synthesis
Charged Microscope Slides Globe Scientific 1358W
Chloroform-d Sigma-Aldrich 151823-10X0.75ML Used to characterize PEGaMA
Click-iT Plus EdU Cell Proliferation Kit Invitrogen C10637 Used for staining
50 mL Conical Tubes CELLTREAT 667050B
Cryogenic Safety Kit Cole-Parmer EW-25000-85
Cryostat Leica CM 1850-3-1
Dialysis Tubing Repligen 132105
4’,6-Diamidino-2-Phylindole (DAPI) Sigma-Aldrich D9542-1MG Used for staining
Diethyl Ether Fisher Scientific E1384 Used during PEGaMA synthesis
1,4-Dithiothreitol (DTT)  Sigma-Aldrich 10197777001 Bioink component
Dulbecco's Modified Eagle's Medium (DMEM) Cytiva SH30271.FS
Ethyl 2-(Bromomethyl)Acrylate (EBrMA) Ambeed Inc. A918087-25g Used during PEGaMA synthesis
Filter Paper Whatman 1001-090 Used during PEGaMA synthesis
Freezone 2.5L Freeze Dry System Labconco LA-2.5LR Lyophilizer
Fusion 360 Autodesk N/A Software download
2.5 mL Gastight Syringe Hamilton 81420 Used for bioprinting
15 Gauge 1.5" IT Series Tip Jensen Global JG15-1.5X Used for bioprinting
30 Gauge 0.5" HP Series Tip Jensen Global JG30-0.5HPX Used for bioprinting
Goat Anti-Mouse Alexa Fluor 555 Antibody Fisher Scientific A21422 Used for staining
Glycine Fisher Scientific C2H5NO2 Used during staining process
Hemocytometer Fisher Scientific 1461
Hoechst Thermo Scientific 62249 Used during staining process
Human Pulmonary Artery Adventitial Fibroblasts (HPAAFs) AcceGen ABC-TC3773  From a 2-year-old male patient
Hydrochloric Acid (HCl) Fisher Scientific A144-500 Used to pH adjust solutions
ImageJ National Institutes of Health (NIH) N/A Free software download
ImmEdge® Pen Vector Laboratories H-4000 Used during staining process
Incubator VWR VWR51014991
LifeSupport Gelatin Microparticle Slurry (Gelatin Slurry) Advanced Biomatrix 5244-10GM Used for bioprinting
Light Microscope Olympus CKX53 Inverted light microscope
Lithium Phenyl-2,4,6-Trimethylbenzoylphosphinate (LAP) Sigma-Aldrich 900889-5G Photoinitiator used for photostiffening
Liquid Nitrogen N/A N/A
LulzBot Mini 2  LulzBot N/A Bioprinter adapted
Methacryloxyethyl Thiocarbamoyl Rhodamine B  Polysciences Inc. 669775-30-8
2-Methylbutane Sigma-Aldrich M32631-4L
Microman Capillary Pistons CP1000 VWR 76178-166 Positive displacement pipette tips
MMP2 Degradable Crosslinker (KCGGPQGIWGQGCK) GL Biochem N/A Bioink component
Mouse Anti-Human αSMA Monoclonal Antibody Fisher Scientific MA5-11547 Used for staining
OmniCure Series 2000  Lumen Dynamics S2000-XLA UV light source used for photostiffening
Paraformaldehyde (PFA)  Electron Microscopy Sciences 15710 Used to fix samples
pH Meter Mettler Toledo  FP20 
pH Strips Cytiva 10362010
Phosphate Buffered Saline (PBS) Hyclone Laboratories, Inc. Cytiva SH30256.FS
Pipette Set Fisher Scientific 14-388-100
10 µL Pipette Tips USA Scientific 1120-3710
20 µL Pipette Tips USA Scientific 1183-1510
200 µL Pipette Tips USA Scientific 1111-0700
1000 µL Pipette Tips USA Scientific 1111-2721
Poly(Ethylene Glycol)-Alpha Methacrylate (PEGαMA) N/A N/A Refer to manuscript for synthesis steps
Poly(Ethylene Oxide) (PEO) Sigma-Aldrich 372773-250G Bioink component
Positive Displacement Pipette Fisher Scientific FD10004G 100-1000 µL
Potassium Hydroxide (KOH) Sigma-Aldrich 221473-500G Used to pH adjust solutions
ProLong Gold Antifade Reagent Invitrogen P36930 Used during staining process
Pronterface All3DP N/A Software download
Propidium Iodide Sigma-Aldrich P4864-10ML Used for staining
RGD Peptide (CGRGDS) GL Biochem N/A Bioink component
Rocker VWR 10127-876
Rotary Evaporator  Thomas Scientific 11100V2022 Used during PEGaMA synthesis
Rubber Band Staples 808659
Schlenk Flask  Kemtech America F902450 Used during PEGaMA synthesis
Slic3r Slic3r N/A Software download
Smooth Muscle Cell Growth Medium-2 (SmGM-2) BulletKit Lonza CC-3182 Kit contains CC-3181 and CC-4149 components
Sodium Hydride  Sigma-Aldrich 223441-50G Used during PEGaMA synthesis
Sorvall ST 40R Centrifuge Fisher Scientific 75-004-525
Stir Bar VWR 58948-091
Syringe Filter VWR 28145-483 Used to sterile filter solutions
T-75 Tissue-Cultured Treated Flask VWR 82050-856 Used for cell culture work
Tissue-Tek Cyromold Sakura 4557
Tissue-Tek O.C.T Compound (OCT) Sakura 4583
Tris(2-Carboxyethyl) Phosphine (TCEP) Sigma-Aldrich C4706-2G
Triton X-100 Fisher Bioreagents C34H622O11 Used during staining process
Trypan Blue Sigma-Aldrich T8154-20ML Used for cell culture work
0.05% Trypsin-EDTA Gibco 25-300-062 Used for cell culture work
Tween 20 Fisher Bioreagents C58H114O26 Used during staining process
Upright Microscope Olympus BX63F Fluorescent microscope capabilities
Water Bath PolyScience WBE20A11B
24-Well Tissue Culture Plates Corning 3527

Riferimenti

  1. Ahrens, J. H., et al. Programming cellular alignment in engineered cardiac tissue via bioprinting anisotropic organ building blocks. Advanced Materials. 34 (26), e2200217 (2022).
  2. Lin, N. Y. C., et al. Renal reabsorption in 3D vascularized proximal tubule models. Proceedings of the National Academy of Sciences of the United States of America. 116 (12), 5399-5404 (2019).
  3. Grigoryan, B., et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science. 364 (6439), 458-464 (2019).
  4. Kang, Y., Datta, P., Shanmughapriya, S., Ozbolat, I. T. 3D bioprinting of tumor models for cancer research. ACS Applied Biomaterials. 3 (9), 5552-5573 (2020).
  5. Davis-Hall, D., Thomas, E., Pena, B., Magin, C. M. 3D-bioprinted, phototunable hydrogel models for studying adventitial fibroblast activation in pulmonary arterial hypertension. Biofabrication. 15 (1), (2022).
  6. Mirdamadi, E., Tashman, J. W., Shiwarski, D. J., Palchesko, R. N., Feinberg, A. W. FRESH 3D bioprinting of a full-size model of the human heart. ACS Biomaterials Science & Engineering. 6 (11), 6453-6459 (2020).
  7. Shiwarski, D. J., Hudson, A. R., Tashman, J. W., Feinberg, A. W. Emergence of FRESH 3D printing as a platform for advanced tissue biofabrication. APL Bioengineering. 5 (1), 010904 (2021).
  8. Petrou, C. L., et al. Clickable decellularized extracellular matrix as a new tool for building hybrid hydrogels to model chronic fibrotic diseases in vitro. Journal of Materials Chemistry B. 8 (31), 6814-6826 (2020).
  9. Hewawasam, R. S., Blomberg, R., Serbedzija, P., Magin, C. M. Chemical modification of human decellularized extracellular matrix for incorporation into phototunable hybrid hydrogel models of tissue fibrosis. ACS Applied Materials & Interfaces. 15 (12), 15071-15083 (2023).
  10. Saleh, K. S., et al. Engineering hybrid hydrogels comprised healthy or diseased decellularized extracellular matrix to study pulmonary fibrosis. Cellular and Molecular Bioengineering. 15 (5), 505-519 (2022).
  11. Guvendiren, M., Burdick, J. A. Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nature Communications. 3, 792 (2012).
  12. Rosales, A. M., Vega, S. L., DelRio, F. W., Burdick, J. A., Anseth, K. S. Hydrogels with reversible mechanics to probe dynamic cell microenvironments. Angewandte Chemie International Edition English. 56 (40), 12132-12136 (2017).
  13. Wynn, T. A., Ramalingam, T. R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nature Medicine. 18 (7), 1028-1040 (2012).
  14. Huertas, A., Tu, L., Humbert, M., Guignabert, C. Chronic inflammation within the vascular wall in pulmonary arterial hypertension: more than a spectator. Cardiovascular Research. 116 (5), 885-893 (2020).
  15. Kendall, R. T., Feghali-Bostwick, C. A. Fibroblasts in fibrosis: novel roles and mediators. Frontiers in Pharmacology. 5, 123 (2014).
  16. Parker, M. W., et al. Fibrotic extracellular matrix activates a profibrotic positive feedback loop. The Journal of Clinical Investigation. 124 (4), 1622-1635 (2014).
  17. Habiel, D. M., Hogaboam, C. Heterogeneity in fibroblast proliferation and survival in idiopathic pulmonary fibrosis. Frontiers in Pharmacology. 5, 2 (2014).
  18. Hu, C. J., Zhang, H., Laux, A., Pullamsetti, S. S., Stenmark, K. R. Mechanisms contributing to persistently activated cell phenotypes in pulmonary hypertension. The Journal of Physiology. 597 (4), 1103-1119 (2019).
  19. Li, M., et al. Emergence of fibroblasts with a proinflammatory epigenetically altered phenotype in severe hypoxic pulmonary hypertension. The Journal of Immunology. 187 (5), 2711-2722 (2011).
  20. Hinton, T. J., et al. Three-dimensional printing of complex biological structures by freeform-reversible embedding of suspended hydrogels. Science Advances. 1 (9), e1500758 (2015).
  21. Brown, T. E., et al. Secondary photocrosslinking of click hydrogels to probe myoblast mechanotransduction in three dimensions. Journal of the American Chemical Society. 140 (37), 11585-11588 (2018).
  22. Ondeck, M. G., et al. Dynamically stiffened matrix promotes malignant transformation of mammary epithelial cells via collective mechanical signaling. Proceedings of the National Academy of Sciences of the United States of America. 116 (9), 3502-3507 (2019).
  23. Caliari, S. R., et al. Stiffening hydrogels for investigating the dynamics of hepatic stellate cell mechanotransduction during myofibroblast activation. Scientific Reports. 6, 21387 (2016).
  24. Liu, F., et al. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. Journal of Cell Biology. 190 (4), 693-706 (2010).
  25. Tschumperlin, D. J., Ligresti, G., Hilscher, M. B., Shah, V. H. Mechanosensing and fibrosis. The Journal of Clinical Investigation. 128 (1), 74-84 (2018).
  26. Chelladurai, P., Seeger, W., Pullamsetti, S. S. Matrix metalloproteinases and their inhibitors in pulmonary hypertension. European Respiratory Journal. 40 (3), 766-782 (2012).
  27. Caracena, T., et al. Alveolar epithelial cells and microenvironmental stiffness synergistically drive fibroblast activation in three-dimensional hydrogel lung models. Biomaterials Science. 10 (24), 7133-7148 (2022).
  28. Ruskowitz, E. R., DeForest, C. A. Proteome-wide analysis of cellular response to ultraviolet light for biomaterial synthesis and modification. ACS Biomaterials Science & Engineering. 5 (5), 2111-2116 (2019).
  29. Kruse, C. R., et al. The effect of pH on cell viability, cell migration, cell proliferation, wound closure, and wound reepithelialization: In vitro and in vivo study. Wound Repair and Regeneration. 25 (2), 260-269 (2017).
  30. Filippi, M., et al. Perfusable biohybrid designs for bioprinted skeletal muscle tissue. Advanced Healthcare Materials. , e1500758 (2023).
  31. Matthiesen, I., et al. Astrocyte 3D culture and bioprinting using peptide-functionalized hyaluronan hydrogels. Science and Technology of Advanced Materials. 24 (1), 2165871 (2023).
  32. Xu, L., et al. Bioprinting a skin patch with dual-crosslinked gelatin (GelMA) and silk fibroin (SilMA): An approach to accelerating cutaneous wound healing. Materials Today Bio. 18, 100550 (2023).
  33. Bliley, J. M., Shiwarski, D. J., Feinberg, A. W. 3D-bioprinted human tissue and the path toward clinical translation. Science Translational Medicine. 14 (666), eabo7047 (2022).

Play Video

Citazione di questo articolo
Tanneberger, A. E., Blair, L., Davis-Hall, D., Magin, C. M. 3D Bioprinting Phototunable Hydrogels to Study Fibroblast Activation. J. Vis. Exp. (196), e65639, doi:10.3791/65639 (2023).

View Video