Summary

吲哚菁绿血管造影表征新生血管性年龄相关性黄斑变性的血管形态

Published: August 11, 2023
doi:

Summary

目前,荧光素血管造影 (FA) 是识别脉络膜新生血管形成 (CNV) 动物模型渗漏模式的首选方法。然而,FA不提供有关血管形态的信息。该协议概述了使用吲哚菁绿色血管造影(ICGA)来表征小鼠模型中激光诱导的CNV的不同病变类型。

Abstract

年龄相关性黄斑变性(AMD)是老年人失明的主要原因,由于人口老龄化,其患病率正在迅速增加。脉络膜新生血管 (CNV) 或湿性 AMD 占所有 AMD 病例的 10%-20%,是导致 80%-90% 的 AMD 相关失明的原因。目前的抗VEGF疗法在约50%的患者中显示出次优反应。CNV 患者对抗 VEGF 治疗的耐药性通常与小动脉 CNV 相关,而应答者往往有毛细血管 CNV。虽然荧光素血管造影 (FA) 通常用于评估湿性 AMD 患者和动物模型的渗漏模式,但它不提供有关 CNV 血管形态的信息(小动脉 CNV 毛细血管 CNV)。该协议介绍了使用吲哚菁绿色血管造影(ICGA)来表征激光诱导的CNV小鼠模型中的病变类型。该方法对于研究湿性AMD抗VEGF耐药的机制和治疗策略至关重要。建议将 ICGA 与 FA 合并,以在机制和治疗研究中全面评估 CNV 的渗漏和血管特征。

Introduction

年龄相关性黄斑变性 (AMD) 是一种普遍存在的疾病,会导致老年人严重视力丧失1.仅在美国,AMD患者的数量预计将翻一番,到2050年将达到近2200万,而目前的1100万。在全球范围内,预计到 2040 年,AMD 病例数将达到惊人的 2.88 亿2

脉络膜新生血管形成 (CNV),也称为“湿性”或新生血管性 AMD,由于中央视网膜下方形成异常血管,会对视力产生毁灭性影响。这会导致出血、视网膜渗出和严重的视力丧失。靶向细胞外 VEGF 的抗血管内皮生长因子 (VEGF) 疗法的引入彻底改变了 CNV 治疗。然而,尽管取得了这些进展,但高达 50% 的患者对这些疗法表现出次优反应,持续的疾病活动,例如积液和未解决或新发出血34567891011121314

临床研究表明,CNV 患者的抗 VEGF 耐药通常与小动脉 CNV 的存在相对应,其特征是大口径分支小动脉、血管环和吻合口连接9。反复的抗VEGF治疗可导致血管异常、小动脉CNV的发展,并最终导致对抗VEGF治疗的耐药性14,15。在小动脉 CNV 病例中,持续性液体渗漏可能是由于动静脉吻合口环处形成不充分的紧密连接导致渗出加剧,尤其是在高血流量条件下 9。相反,对抗VEGF治疗反应良好的个体往往表现出毛细血管CNV。

在我们使用动物模型的研究中,我们已经证明激光诱导的老年小鼠 CNV 会发展为小动脉 CNV,并显示出对抗 VEGF 治疗的耐药性16,17。相反,年轻小鼠中激光诱导的CNV导致毛细血管CNV的发展和对抗VEGF治疗的高反应性。因此,在机制和治疗研究中区分 CNV 血管类型至关重要。

在临床环境中,CNV 通常根据荧光素血管造影 (FA) 渗漏模式(例如 1 型、2 型)进行分类,这些渗漏使用荧光素染料来跟踪渗出并识别病理渗漏区域。在AMD研究中,CNV主要在动物模型中使用FA进行研究。然而,FA 未能揭示 CNV 的血管形态。此外,FA只能捕获可见光谱中的图像,而无法可视化视网膜色素上皮(RPE)下方的脉络膜脉管系统。相比之下,吲哚菁绿 (ICG) 对血浆蛋白表现出很强的亲和力,可促进主要的血管内潴留,并能够可视化血管结构和血流9。通过利用ICG的近红外荧光特性,使用ICG血管造影(ICGA)对视网膜和脉络膜色素进行成像成为可能。在这种情况下,提出了一种结合 FA 和 ICGA 的方案来研究年轻和老年小鼠中激光诱导的脉络膜新生血管形成 (CNV) 的渗漏和血管形态,其中观察到毛细血管和小动脉 CNV。

Protocol

本研究中进行的动物实验获得了贝勒医学院机构动物护理和使用委员会 (IACUC) 的批准。所有程序均按照视觉和眼科研究协会 (ARVO) 关于在眼科和视觉研究中使用动物的声明中概述的指南进行。本研究使用年轻(7-9 周)和老年(12-16 个月)C57BL/6J 雄性和雌性小鼠进行本研究。这些动物是从商业来源获得的(见 材料表)。 1. 成像系统的准备 <li…

Representative Results

根据该方案,在年轻(7-9 周)和老年(12-16 个月)C57BL/6J 小鼠中对激光诱导的 CNV 进行 ICGA 和 FA。FA 提供有关 CNV 病变的位置和渗漏的信息(图 1,左图),而 ICGA 揭示了 CNV 病变的血管形态(图 1,右图)。在年轻小鼠中,毛细血管CNV在CNV病变中占主导地位。相比之下,老年小鼠表现出以大口径血管、血管环和吻合口连接为特征的小动脉 CNV。年轻和老?…

Discussion

本研究证明了使用吲哚菁绿色血管造影 (ICGA) 在激光诱导 CNV 小鼠模型中鉴定小动脉和毛细血管脉络膜新生血管形成 (CNV) 的血管形态。吲哚菁绿 (ICG) 染料的血红蛋白结合和红外光特性使 CNV 形态的检测成为可能,这很难使用荧光素血管造影 (FA) 来实现,这是研究界目前采用的方法。

方案中的第一个关键步骤是确保将染料注射到腹膜腔中而不会穿透器官。在左下象?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了 BrightFocus 基金会、视网膜研究基金会、Mullen 基金会和 Sarah Campbell Blaffer 眼科基金会对 YF 的资助,NIH 对贝勒医学院的核心资助 2P30EY002520,以及对贝勒医学院眼科的无限制资助预防失明研究。

Materials

32-G Insulin Syringe MHC Medical Products NDC 08496-3015-01
Alexa Fluor 488 goat anti-rabbit secondary antibody Invitrogen  A11008
Anti-α smooth muscle Actin antibody Abcam ab5694
Bovine Serum Albumin Santa Cruz Biotechnology, Inc. sc-2323 
C57BL/6J mice (7-9 weeks) The Jackson Laboratory Strain #:000664
Fluorescein Sodium Salt Sigma-Aldrich MFCD00167039
Gaymar T Pump Heat Therapy System Gaymar TP-500 Water circulation heat pump for mouse recovery after imaging
GenTeal Gel Genteal NDC 58768-791-15 Clear lubricant eye gel
GS-IB4 Alexa-Flour 568 conjugate Invitrogen  I21412
Heidelberg Eye Explorerer Heidelberg Engineering, Germany HEYEX2
Indocyanine Green Pfaultz & Bauer I01250
Ketamine Vedco Inc. NDC 50989-996-06
Paraformaldehyde Acros Organics  416785000
Proparacaine Hydrochloride Ophthalmic Solution (0.5%) Sandoz NDC 61314-016-01
Spectralis Multi-Modality Imaging System Heidelberg Engineering, Germany SPECTRALIS HRA+OCT Tropicamide ophthalmic solution (1%) Bausch & Lomb NDC 24208-585-64 for dilation of pupils GenTeal Gel Genteal NDC 58768-791-15 clear lubricant eye gel Ketamine Vedco Inc NDC 50989-996-06 Xylazine Lloyd Laboratories NADA 139-236 Acepromazine Vedco Inc NDC 50989-160-11 32-G Needle Steriject PRE-32013 1-ml syringe BD 309659 Indocyanine Green Pfaltz & Bauer I01250 Heidelberg Engineering, Germany SPECTRALIS HRA+OCT
Triton X-100  Sigma-Aldrich X100-1L
Tropicamide ophthalmic solution (1%) Bausch & Lomb NDC 24208-585-64 For dilation of pupils
Xylazine Lloyd Laboratories NADA 139-236

Riferimenti

  1. Fleckenstein, M., et al. Age-related macular degeneration. Nature Reviews Disease Primers. 7 (1), 1-25 (2021).
  2. Wong, W. L., et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. The Lancet Global Health. 2 (2), e106-e116 (2014).
  3. Maguire, M. G., et al. Five-Year outcomes with anti-vascular endothelial growth factor treatment of neovascular age-related macular degeneration: the comparison of age-related macular degeneration treatments trials. Ophthalmology. 123 (8), 1751-1761 (2016).
  4. Yang, S., Zhao, J., Sun, X. Resistance to anti-VEGF therapy in neovascular age-related macular degeneration: a comprehensive review. Drug Design, Development and Therapy. 10, 1857-1867 (2016).
  5. Ehlken, C., Jungmann, S., Böhringer, D., Agostini, H. T., Junker, B., Pielen, A. Switch of anti-VEGF agents is an option for nonresponders in the treatment of AMD. Eye. 28 (5), 538-545 (2014).
  6. Heier, J. S., et al. Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology. 119 (12), 2537-2548 (2012).
  7. Rofagha, S., Bhisitkul, R. B., Boyer, D. S., Sadda, S. R., Zhang, K. SEVEN-UP Study Group Seven-year outcomes in ranibizumab-treated patients in ANCHOR, MARINA, and HORIZON: a multicenter cohort study (SEVEN-UP). Ophthalmology. 120 (11), 2292-2299 (2013).
  8. Krebs, I., Glittenberg, C., Ansari-Shahrezaei, S., Hagen, S., Steiner, I., Binder, S. Non-responders to treatment with antagonists of vascular endothelial growth factor in age-related macular degeneration. British Journal of Ophthalmology. 97 (11), 1443-1446 (2013).
  9. Mettu, P. S., Allingham, M. J., Cousins, S. W. Incomplete response to Anti-VEGF therapy in neovascular AMD: Exploring disease mechanisms and therapeutic opportunities. Progress in Retinal and Eye Research. 82, 100906 (2021).
  10. Otsuji, T., et al. Initial non-responders to ranibizumab in the treatment of age-related macular degeneration (AMD). Clinical Ophthalmology (Auckland, N.Z). 7, 1487-1490 (2013).
  11. Cobos, E., et al. Association between CFH, CFB, ARMS2, SERPINF1, VEGFR1 and VEGF polymorphisms and anatomical and functional response to ranibizumab treatment in neovascular age-related macular degeneration. Acta Ophthalmologica. 96 (2), e201-e212 (2018).
  12. Kitchens, J. W., et al. A pharmacogenetics study to predict outcome in patients receiving anti-VEGF therapy in age related macular degeneration. Clinical Ophthalmology (Auckland, N.Z.). 7, 1987-1993 (2013).
  13. Rosenfeld, P. J., Shapiro, H., Tuomi, L., Webster, M., Elledge, J., Blodi, B. Characteristics of patients losing vision after 2 Years of monthly dosing in the phase III Ranibizumab clinical trials. Ophthalmology. 118 (3), 523-530 (2011).
  14. Spaide, R. F. Optical coherence tomography angiography signs of vascular abnormalization with antiangiogenic therapy for choroidal neovascularization. American Journal of Ophthalmology. 160 (1), 6-16 (2015).
  15. Lumbroso, B., Rispoli, M., Savastano, M. C., Jia, Y., Tan, O., Huang, D. Optical coherence tomography angiography study of choroidal neovascularization early response after treatment. Developments in Ophthalmology. 56, 77-85 (2016).
  16. Zhu, L., et al. Combination of apolipoprotein-A-I/apolipoprotein-A-I binding protein and anti-VEGF treatment overcomes anti-VEGF resistance in choroidal neovascularization in mice. Communications Biology. 3 (1), 386 (2020).
  17. Zhang, Z., Shen, M. M., Fu, Y. Combination of AIBP, apoA-I, and Aflibercept overcomes anti-VEGF resistance in neovascular AMD by inhibiting arteriolar choroidal neovascularization. Investigative Ophthalmology & Visual Science. 63 (12), 2 (2022).
  18. Koehn, D., Meyer, K. J., Syed, N. A., Anderson, M. G. Ketamine/Xylazine-induced corneal damage in mice. PloS One. 10 (7), e0132804 (2015).
  19. Li, X. -. T., Qin, Y., Zhao, J. -. Y., Zhang, J. -. S. Acute lens opacity induced by different kinds of anesthetic drugs in mice. International Journal of Ophthalmology. 12 (6), 904-908 (2019).
  20. Zhou, T. E., et al. Preventing corneal calcification associated with xylazine for longitudinal optical coherence tomography in young rodents. Investigative Ophthalmology & Visual Science. 58 (1), 461-469 (2017).
  21. Ikeda, W., Nakatani, T., Uemura, A. Cataract-preventing contact lens for in vivo imaging of mouse retina. BioTechniques. 65 (2), 101-104 (2018).
  22. Kumar, S., Berriochoa, Z., Jones, A. D., Fu, Y. Detecting abnormalities in choroidal vasculature in a mouse model of age-related macular degeneration by time-course indocyanine green angiography. Journal of Visualized Experiments. 84, e51061 (2014).
check_url/it/65682?article_type=t

Play Video

Citazione di questo articolo
Attarde, A., Riad, T. S., Zhang, Z., Ahir, M., Fu, Y. Characterization of Vascular Morphology of Neovascular Age-Related Macular Degeneration by Indocyanine Green Angiography. J. Vis. Exp. (198), e65682, doi:10.3791/65682 (2023).

View Video