Summary

Высокопроизводительная экспрессия и очистка носителей растворенных веществ человека для структурных и биохимических исследований

Published: September 29, 2023
doi:

Summary

Структурные и биохимические исследования мембранных транспортеров человека требуют миллиграммовых количеств стабильного, интактного и однородного белка. В этой статье мы опишем масштабируемые методы скрининга, экспрессии и очистки переносчиков растворенных веществ человека с использованием генов, оптимизированных для кодонов.

Abstract

Носители растворенных веществ (SLC) — это мембранные транспортеры, которые импортируют и экспортируют ряд эндогенных и экзогенных субстратов, включая ионы, питательные вещества, метаболиты, нейротрансмиттеры и фармацевтические препараты. Несмотря на то, что они стали привлекательными терапевтическими мишенями и маркерами заболеваний, эта группа белков все еще относительно недооценена современными фармацевтическими препаратами. Проекты по разработке лекарств для этих переносчиков затруднены из-за ограниченных структурных, функциональных и физиологических знаний, в конечном счете, из-за трудностей в экспрессии и очистке этого класса белков, встроенных в мембраны. В этой статье мы демонстрируем методы получения высокочистых, миллиграммовых количеств белков-переносчиков SLC человека с использованием кодон-оптимизированных последовательностей генов. В сочетании с систематическим изучением конструкционного дизайна и высокопроизводительной экспрессии, эти протоколы обеспечивают сохранение структурной целостности и биохимической активности белков-мишеней. Мы также выделяем важнейшие этапы экспрессии эукариотических клеток, аффинной очистки и хроматографии с исключением размера этих белков. В конечном счете, этот рабочий процесс позволяет получить чистые, функционально активные и стабильные белковые препараты, пригодные для определения структуры с высоким разрешением, исследований переноса, анализа вовлечения малых молекул и высокопроизводительного скрининга in vitro .

Introduction

Мембранные белки уже давно являются мишенью как для исследователей, так и для фармацевтической промышленности. Из них растворенные носители (SLC) представляют собой семейство из более чем 400 вторичных генов-переносчиков, закодированных в геноме человека1. Эти переносчики участвуют в импорте и экспорте многочисленных молекул, включая ионы2, нейротрансмиттеры3, липиды 4,5,6,7, аминокислоты8, питательные вещества 9,10,11 и фармацевтические препараты 12. При такой широте субстратов эти белки также вовлечены в целый ряд патофизиологий через транспорт токсинов13, транспорт и ингибирование наркотиками 14,15 или вредные мутации16. Бактериальные гомологи послужили прототипами фундаментального транспортного механизма нескольких семейств SLC 17,18,19,20,21,22,23,24,25. В отличие от белков человека, прокариотические ортологи часто лучше экспрессируются в хорошо изученной системе экспрессии Escherichia coli 26,27 и более стабильны в более мелких детергентах, которые дают хорошо упорядоченные кристаллы для рентгеновской кристаллографии28. Однако последовательности и функциональные различия затрудняют использование этих отдаленно родственных белков для разработки лекарств29,30. Следовательно, для расшифровки механизма действия препаратов, нацеленных на SLC 31,32,33,34,35, часто требуется непосредственное изучение белка человека. Несмотря на то, что недавние достижения в области криоэлектронной микроскопии (Крио-ЭМ) позволили охарактеризовать структурные СЛК в условиях, приближенных к нативным36,37, трудности с экспрессией и очисткой этих белков остаются проблемой для разработки таргетной терапии и диагностики.

Чтобы решить эту проблему, консорциум RESOLUTE (re-solute.eu) разработал ресурсы и протоколы для крупномасштабной экспрессии и очистки белков семейства SLCчеловека 38. Начав с кодон-оптимизированных генов, мы разработали методы высокопроизводительного клонирования и скрининга SLC-конструкций. Эти методы систематически применялись ко всему семейству SLC, гены клонировались в систему вирусной экспрессии BacMam, а экспрессия белка тестировалась на клеточных линиях человека39 на основе ранее описанных методов высокопроизводительного клонирования и тестирования экспрессии40. Таким образом, ген SLC клонируется из плазмиды pDONR221 в вектор pHTBV1.1. Эта конструкция впоследствии используется для транспонирования интересующего гена в бакмидный вектор для трансфекции клеток насекомых, который включает промотор цитомегаловируса и элементы энхансера для экспрессии в клетках млекопитающих. Полученный бакуловирус может быть использован для трансдукции клеток млекопитающих для экспрессии белка-мишени SLC.

Кроме того, мы разработали стандартизированные методы для крупномасштабной экспрессии и стабильной очистки выбранных SLC (рис. 1). Этот протокол включает в себя несколько контрольных точек, что облегчает эффективное устранение неполадок и сводит к минимуму вариативность между экспериментами. В частности, рутинный мониторинг экспрессии и локализации белков, а также мелкомасштабная оптимизация условий очистки для отдельных мишеней были поддержаны метками стрептококка и зеленого флуоресцентного белка (GFP)41,42.

В конечном счете, эти химически чистые и структурно однородные образцы белков могут быть использованы для структурного определения с помощью рентгеновской кристаллографии или криоэлектронной микроскопии (Крио-ЭМ), биохимических анализов взаимодействия с мишенями, иммунизации для генерации связующего и внеклеточных функциональных исследований путем восстановления в химически определенные липосомы.

Protocol

ПРИМЕЧАНИЕ: Все кодон-оптимизированные гены RESOLUTE SLC были депонированы в AddGene43, ссылки на который доступны в списке общедоступных реагентов RESOLUTE44. Эти гены были клонированы в плазмиду pDONR221 и позволяют напрямую клонировать гены в целевой вектор с помощью рекомби…

Representative Results

Гены SLC могут быть клонированы из плазмид RESOLUTE pDONR в векторы BacMam для экспрессии млекопитающихОписанные протоколы клонирования, экспрессии и очистки оказались успешными для многих переносчиков SLC в нескольких белковых складках. Тем не менее, процедуры включают в себя несколь…

Discussion

Разработка SLC-таргетной терапии по-прежнему затруднена из-за отсутствия систематической характеристики функции транспортера. Это привело к непропорционально меньшему количеству препаратов, нацеленных на этот класс белков по сравнению с GPCR и ионными каналами63, несмотря н…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Эта работа была выполнена в рамках проекта RESOLUTE. Компания RESOLUTE получила финансирование от Совместного предприятия «Инициатива по инновационным лекарственным средствам 2» в рамках грантового соглашения No 777372. Это совместное предприятие получает поддержку от программы исследований и инноваций Европейского Союза «Горизонт 2020» и EFPIA. Эта статья отражает только точку зрения авторов, и ни ИМИ, ни Европейский Союз, ни EFPIA не несут ответственности за любое использование содержащейся в ней информации. Плазмида pHTBV была любезно предоставлена профессором Фредериком Бойсом (Frederick Boyce) из Гарварда.

Materials

3C protease Produced in-house
50 or 100 kDa cut-off centrifugal concentrators Sartorius VS0242
5-Cyclohexyl-1-Pentyl-β-D-Maltoside Anatrace C325 CYMAL-5
96-well bacmid purification kit Millipore LSKP09604 Montage Plasmid Miniprep
96-well block (2 mL) Greiner Bio-One 780271
Adhesive plastic seals Qiagen 19570 Tape Pads
Agarose size exclusion chromatography column Cytiva 29091596 Superose 6 Increase 10/300 GL
Benzonase DNAse Produced in-house
BisTris Sigma Aldrich B9754
Cholesteryl Hemisuccinate Tris salt Anatrace CH210 CHS
Cobalt metal affinity resin Takara Bio 635653 TALON Metal Affinity Resin
D(+)-Biotin Sigma Aldrich 851209
Dextran-agarose size exclusion chromatography column Cytiva 28990944 Superdex 200 Increase 10/300 GL
Digitonin Apollo Scientific BID3301
Dounce tissue grinder (40 mL) DWK Life Sciences 357546
EDTA-free protease inhibitor cocktail Sigma Aldrich 4693132001 cOmplete, EDTA-free Protease Inhibitor Cocktail
Fetal Bovine Serum Thermo Fisher 10500064
Fos-Choline-12 Anatrace F308S FS-12
Glycerol Sigma Aldrich G5516
Glyco-diosgenin Anatrace GDN101 GDN
Gravity flow columns Cole-Parmer WZ-06479-25
HEK293 medium Thermo Fisher 12338018 FreeStyle 293 medium
HEPES Apollo Scientific BI8181
Hydrophilic, neutral silica UHPLC column Sepax 231300-4615 Unix-C SEC-300 4.6 x 150
Imidazole Sigma Aldrich 56750
Insect transfection reagent Sigma Aldrich 71259 Reagent
Lauryl Maltose Neopentyl Glycol Anatrace NG310 LMNG
Magnesium Chloride Hexahydrate Sigma Aldrich M2670
Micro-expression shaker Glas-Col 107A DPMINC24CE
NaCl Sigma Aldrich S9888
n-Decyl-β-D-Maltoside Anatrace D322 DM
n-Dodecyl-b-D-Maltopyranoside Anatrace D310 DDM
n-Dodecyl-N,N-Dimethylamine-N-Oxide Anatrace D360 LDAO
n-Nonyl-β-D-Glucopyranoside Anatrace N324S NG
n-Octyl-d17-β-D-Glucopyranoside Anatrace O311D OGNG
Octaethylene Glycol Monododecyl
Ether
Anatrace O330 C12E8
Octyl Glucose Neopentyl Glycol Anatrace NG311 OGNG
Phosphate Buffered Saline Sigma Aldrich D8537 DPBS
Polyoxyethylene(10)dodecyl Ether Anatrace AP1210 C12E10
Polyoxyethylene(9)dodecyl Ether Anatrace APO129 C12E9
Porous seal for tissue culture plates VWR 60941-084 Rayon Films for Biological Cultures
Proteinase K New England Biolabs P8107S
Recombination enzyme mix Thermo Fisher 11791020 Gateway LR Clonase II
Serum-free insect media Gibco 10902088 Sf-900 II serum-free media
Sodium Butyrate Sigma Aldrich 303410
Sonicator 24-head probe Sonics 630-0579
Sonicator power unit Sonics VCX 750
Strep-Tactin resin IBA Life Sciences 2-5030-025 Strep-TactinXT 4Flow high- capacity resin
Sucrose Sigma Aldrich S7903
Sucrose Monododecanoate Anatrace S350 DDS
Suspension-adapted HEK293 cells Thermo Fisher A14527 Expi293F
Transfection reagent Sigma Aldrich 70967 GeneJuice Transfection Reagent

Riferimenti

  1. Wang, W. W., Gallo, L., Jadhav, A., Hawkins, R., Parker, C. G. The druggability of solute carriers. Journal of Medicinal Chemistry. 63 (8), 3834-3867 (2020).
  2. Liao, J., et al. Structural insight into the ion-exchange mechanism of the sodium/calcium exchanger. Science. 335 (6069), 686-690 (2012).
  3. Bröer, S., Gether, U. The solute carrier 6 family of transporters: the solute carrier family 6. British Journal of Pharmacology. 167 (2), 256-278 (2012).
  4. Anderson, C. M., Stahl, A. SLC27 fatty acid transport proteins. Molecular Aspects of Medicine. 34 (2-3), 516-528 (2013).
  5. Nguyen, L. N., et al. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature. 509 (7501), 503-506 (2014).
  6. Kobayashi, N., et al. MFSD2B is a sphingosine 1-phosphate transporter in erythroid cells. Scientific Reports. 8 (1), 4969 (2018).
  7. Kawahara, A., et al. The sphingolipid transporter Spns2 functions in migration of zebrafish myocardial precursors. Science. 323 (5913), 524-527 (2009).
  8. Kandasamy, P., Gyimesi, G., Kanai, Y., Hediger, M. A. Amino acid transporters revisited: New views in health and disease. Trends in Biochemical Sciences. 43 (10), 752-789 (2018).
  9. Navale, A. M., Paranjape, A. N. Glucose transporters: physiological and pathological roles. Biophysical Reviews. 8 (1), 5-9 (2016).
  10. Pajor, A. M. Molecular properties of the SLC13 family of dicarboxylate and sulfate transporters. Pflügers Archiv – European Journal of Physiology. 451 (5), 597-605 (2006).
  11. Nwosu, Z. C., Song, M. G., Di Magliano, M. P., Lyssiotis, C. A., Kim, S. E. Nutrient transporters: connecting cancer metabolism to therapeutic opportunities. Oncogene. 42 (10), 711-724 (2023).
  12. Girardi, E., et al. A widespread role for SLC transmembrane transporters in resistance to cytotoxic drugs. Nature Chemical Biology. 16 (4), 469-478 (2020).
  13. Nigam, S. K. The SLC22 transporter family: a paradigm for the impact of drug transporters on metabolic pathways, signaling, and disease. Annual Review of Pharmacology and Toxicology. 58 (1), 663-687 (2018).
  14. Cheng, M. H., et al. Insights into the modulation of dopamine transporter function by amphetamine, orphenadrine, and cocaine binding. Frontiers in Neurology. 6, 134 (2015).
  15. Sachkova, A., Doetsch, D. A., Jensen, O., Brockmöller, J., Ansari, S. How do psychostimulants enter the human brain? Analysis of the role of the proton-organic cation antiporter. Biochemical Pharmacology. 192, 114751 (2021).
  16. Lin, L., Yee, S. W., Kim, R. B., Giacomini, K. M. SLC transporters as therapeutic targets: emerging opportunities. Nature Reviews Drug Discovery. 14 (8), 543-560 (2015).
  17. Yernool, D., Boudker, O., Jin, Y., Gouaux, E. Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature. 431 (7010), 811-818 (2004).
  18. Huang, Y., Lemieux, M. J., Song, J., Auer, M., Wang, D. -. N. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science. 301 (5633), 616-620 (2003).
  19. Yamashita, A., Singh, S. K., Kawate, T., Jin, Y., Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl–dependent neurotransmitter transporters. Nature. 437 (7056), 215-223 (2005).
  20. Sauer, D. B., et al. Structural basis for the reaction cycle of DASS dicarboxylate transporters. eLife. 9, 61350 (2020).
  21. Levin, E. J., Quick, M., Zhou, M. Crystal structure of a bacterial homologue of the kidney urea transporter. Nature. 462 (7274), 757-761 (2009).
  22. Abramson, J., et al. Structure and mechanism of the lactose permease of Escherichia coli. Science. 301 (5633), 610-615 (2003).
  23. Faham, S., et al. The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na + /sugar symport. Science. 321 (5890), 810-814 (2008).
  24. Lopez-Redondo, M. L., Coudray, N., Zhang, Z., Alexopoulos, J., Stokes, D. L. Structural basis for the alternating access mechanism of the cation diffusion facilitator YiiP. Proceedings of the National Academy of Sciences. 115 (12), 3042-3047 (2018).
  25. Mulligan, C., et al. The bacterial dicarboxylate transporter VcINDY uses a two-domain elevator-type mechanism. Nature Structural & Molecular Biology. 23 (3), 256-263 (2016).
  26. Kermani, A. A. A guide to membrane protein X-ray crystallography. The FEBS Journal. 288 (20), 5788-5804 (2021).
  27. Carpenter, E. P., Beis, K., Cameron, A. D., Iwata, S. Overcoming the challenges of membrane protein crystallography. Current Opinion in Structural Biology. 18 (5), 581-586 (2008).
  28. Sonoda, Y., et al. Benchmarking membrane protein detergent stability for improving throughput of high-resolution X-ray structures. Structure. 19 (1), 17-25 (2011).
  29. Wang, H., et al. Structural basis for action by diverse antidepressants on biogenic amine transporters. Nature. 503 (7474), 141-145 (2013).
  30. Malinauskaite, L., et al. A mechanism for intracellular release of Na+ by neurotransmitter/sodium symporters. Nature Structural & Molecular Biology. 21 (11), 1006-1012 (2014).
  31. Sauer, D. B., et al. Structure and inhibition mechanism of the human citrate transporter NaCT. Nature. 591 (7848), 157-161 (2021).
  32. Qiu, B., Matthies, D., Fortea, E., Yu, Z., Boudker, O. Cryo-EM structures of excitatory amino acid transporter 3 visualize coupled substrate, sodium, and proton binding and transport. Science Advances. 7 (10), eabf5814 (2021).
  33. Canul-Tec, J. C., et al. Structure and allosteric inhibition of excitatory amino acid transporter 1. Nature. 544 (7651), 446-451 (2017).
  34. Coleman, J. A., Green, E. M., Gouaux, E. X-ray structures and mechanism of the human serotonin transporter. Nature. 532 (7599), 334-339 (2016).
  35. Han, L., et al. Structure and mechanism of the SGLT family of glucose transporters. Nature. 601 (7892), 274-279 (2022).
  36. Choy, B. C., Cater, R. J., Mancia, F., Pryor, E. E. A 10-year meta-analysis of membrane protein structural biology: Detergents, membrane mimetics, and structure determination techniques. Biochimica et Biophysica Acta (BBA) – Biomembranes. 1863 (3), 183533 (2021).
  37. Piper, S. J., Johnson, R. M., Wootten, D., Sexton, P. M. Membranes under the magnetic lens: a dive into the diverse world of membrane protein structures using Cryo-EM. Chemical Reviews. 122 (17), 13989-14017 (2022).
  38. Superti-Furga, G., et al. The RESOLUTE consortium: unlocking SLC transporters for drug discovery. Nature Reviews Drug Discovery. 19 (7), 429-430 (2020).
  39. Fornwald, J. A., Lu, Q., Boyce, F. M., Ames, R. S. Gene expression in mammalian cells using BacMam, a modified baculovirus system. Baculovirus and Insect Cell Expression Protocols. 1350, 95-116 (2016).
  40. Mahajan, P., et al. Expression screening of human integral membrane proteins using BacMam. Structural Genomics. 2199, 95-115 (2021).
  41. Kawate, T., Gouaux, E. Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure. 14 (4), 673-681 (2006).
  42. Hattori, M., Hibbs, R. E., Gouaux, E. A fluorescence-detection size-exclusion chromatography-based thermostability assay for membrane protein precrystallization screening. Structure. 20 (8), 1293-1299 (2012).
  43. Fan, M., Tsai, J., Chen, B., Fan, K., LaBaer, J. A central repository for published plasmids. Science. 307 (5717), 1877-1877 (2005).
  44. . Resolute Public Reagents Available from: https://re-solute.eu/resources/reagents (2023)
  45. Hartley, J. L. DNA cloning using in vitro site-specific recombination. Genome Research. 10 (11), 1788-1795 (2000).
  46. Froger, A., Hall, J. E. Transformation of Plasmid DNA into E. coli using the heat shock method. Journal of Visualized Experiments. (6), 253 (2007).
  47. Bergkessel, M., Guthrie, C. Colony PCR. Methods in Enzymology. 529, 299-309 (2013).
  48. Luckow, V. A., Lee, S. C., Barry, G. F., Olins, P. O. Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. Journal of Virology. 67 (8), 4566-4579 (1993).
  49. Dulbecco, R., Vogt, M. Some problems of animal virology as studied by the Plaque Technique. Cold Spring Harbor Symposia on Quantitative Biology. 18, 273-279 (1953).
  50. Hitchman, R. B., Siaterli, E. A., Nixon, C. P., King, L. A. Quantitative real-time PCR for rapid and accurate titration of recombinant baculovirus particles. Biotechnology and Bioengineering. 96 (4), 810-814 (2007).
  51. Hopkins, R. F., Esposito, D. A rapid method for titrating baculovirus stocks using the Sf-9 Easy Titer cell line. BioTechniques. 47 (3), 785-788 (2009).
  52. Shen, C. F., Meghrous, J., Kamen, A. Quantitation of baculovirus particles by flow cytometry. Journal of Virological Methods. 105 (2), 321-330 (2002).
  53. Janakiraman, V., Forrest, W. F., Seshagiri, S. Estimation of baculovirus titer based on viable cell size. Nature Protocols. 1 (5), 2271-2276 (2006).
  54. Bird, L. E., et al. fluorescent protein-based expression screening of membrane proteins in Escherichia coli. Journal of Visualized Experiments. (95), 52357 (2015).
  55. Biedermann, K., Jepsen, P. K., Riise, E., Svendsen, I. Purification and characterization of a Serratia marcescens nuclease produced by Escherichia coli. Carlsberg Research Communications. 54 (1), 17-27 (1989).
  56. Cong, Q., Grishin, N. V. MESSA: MEta-Server for protein Sequence Analysis. BMC Biology. 10 (1), 82 (2012).
  57. Jumper, J., et al. Highly accurate protein structure prediction with AlphaFold. Nature. 596 (7873), 583-589 (2021).
  58. Baek, M., et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science. 373 (6557), 871-876 (2021).
  59. Mancusso, R., Karpowich, N. K., Czyzewski, B. K., Wang, D. -. N. Simple screening method for improving membrane protein thermostability. Methods. 55 (4), 324-329 (2011).
  60. Majd, H., et al. Screening of candidate substrates and coupling ions of transporters by thermostability shift assays. eLife. 7, e38821 (2018).
  61. Nji, E., Chatzikyriakidou, Y., Landreh, M., Drew, D. An engineered thermal-shift screen reveals specific lipid preferences of eukaryotic and prokaryotic membrane proteins. Nature Communications. 9 (1), 4253 (2018).
  62. Alexandrov, A. I., Mileni, M., Chien, E. Y. T., Hanson, M. A., Stevens, R. C. Microscale fluorescent thermal stability assay for membrane proteins. Structure. 16 (3), 351-359 (2008).
  63. Santos, R., et al. A comprehensive map of molecular drug targets. Nature Reviews Drug Discovery. 16 (1), 19-34 (2017).
  64. Goehring, A., et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nature Protocols. 9 (11), 2574-2585 (2014).
  65. Kaipa, J. M., Krasnoselska, G., Owens, R. J., Van Den Heuvel, J. Screening of membrane protein production by comparison of transient expression in insect and mammalian cells. Biomolecules. 13 (5), 817 (2023).
  66. Khanppnavar, B., et al. Structural basis of organic cation transporter-3 inhibition. Nature Communications. 13 (1), 6714 (2022).
  67. Marheineke, K., Grünewald, S., Christie, W., Reiländer, H. Lipid composition of Spodoptera frugiperda (Sf9) and Trichoplusia ni (Tn) insect cells used for baculovirus infection. FEBS Letters. 441 (1), 49-52 (1998).
  68. Majeed, S., Ahmad, A. B., Sehar, U., Georgieva, E. R. Lipid membrane mimetics in functional and structural studies of integral membrane proteins. Membranes. 11 (9), 685 (2021).
  69. Schenck, S., et al. Generation and characterization of anti-VGLUT nanobodies acting as inhibitors of transport. Biochimica. 56 (30), 3962-3971 (2017).
  70. Zimmermann, I., et al. Synthetic single domain antibodies for the conformational trapping of membrane proteins. eLife. 7, e34317 (2018).
  71. Yandrapalli, N., Robinson, T. Ultra-high capacity microfluidic trapping of giant vesicles for high-throughput membrane studies. Lab on a Chip. 19 (4), 626-633 (2019).
  72. Bazzone, A., Barthmes, M., Fendler, K. SSM-based electrophysiology for transporter research. Methods in Enzymology. 594, 31-83 (2017).
  73. Maynard, J. A., et al. Surface plasmon resonance for high-throughput ligand screening of membrane-bound proteins. Biotechnology Journal. 4 (11), 1542-1558 (2009).
  74. Haffke, M., Duckely, M., Bergsdorf, C., Jaakola, V. -. P., Shrestha, B. Development of a biochemical and biophysical suite for integral membrane protein targets: A review. Protein Expression and Purification. 167, 105545 (2020).
check_url/it/65878?article_type=t

Play Video

Citazione di questo articolo
Raturi, S., Li, H., Chang, Y., Scacioc, A., Bohstedt, T., Fernandez-Cid, A., Evans, A., Abrusci, P., Balakrishnan, A., Pascoa, T. C., He, D., Chi, G., Kaur Singh, N., Ye, M., Li, A., Shrestha, L., Wang, D., Williams, E. P., Burgess-Brown, N. A., Dürr, K. L., Puetter, V., Ingles-Prieto, A., Sauer, D. B. High-Throughput Expression and Purification of Human Solute Carriers for Structural and Biochemical Studies. J. Vis. Exp. (199), e65878, doi:10.3791/65878 (2023).

View Video