Summary

Generación eficiente de células T con receptor de antígeno quimérico (CAR) murino

Published: February 02, 2024
doi:

Summary

Este protocolo agiliza la producción de vectores retrovirales y la transducción de células T murinas, lo que facilita la generación eficiente de células CAR-T de ratón.

Abstract

Las terapias celulares diseñadas que utilizan células T receptoras de antígenos quiméricos (CAR) han logrado una eficacia notable en individuos con neoplasias malignas hematológicas y actualmente están en desarrollo para el tratamiento de diversos tumores sólidos. Hasta ahora, la evaluación preliminar de nuevos productos de células CAR-T se ha llevado a cabo predominantemente en modelos tumorales de xenoinjertos utilizando ratones inmunodeficientes. Este enfoque se elige para facilitar el injerto exitoso de células CAR-T humanas en el entorno experimental. Sin embargo, los modelos de ratón singénicos, en los que los tumores y las células CAR-T se derivan de la misma cepa de ratón, permiten evaluar nuevas tecnologías de CAR en el contexto de un sistema inmunitario funcional y un microambiente tumoral integral (TME). El protocolo descrito aquí tiene como objetivo agilizar el proceso de generación de células CAR-T de ratón mediante la presentación de métodos estandarizados para la transducción retroviral y el cultivo ex vivo de células T. Los métodos descritos en este protocolo se pueden aplicar a otras construcciones de CAR más allá de las utilizadas en este estudio para permitir la evaluación rutinaria de nuevas tecnologías de CAR en sistemas inmunocompetentes.

Introduction

Las terapias adoptivas de células T que expresan receptores de antígenos quiméricos (CAR) han revolucionado el campo de la inmunoterapia contra el cáncer al aprovechar el poder del sistema inmunitario adaptativo para atacar y eliminar específicamente las células cancerosas con antígeno positivo1. Si bien el éxito de las terapias de células CAR-T dirigidas a las neoplasias malignas de células B ha sido validado clínicamente, los estudios preclínicos realizados en modelos animales siguen siendo vitales para el desarrollo de nuevos CAR dirigidos a tumores sólidos. Sin embargo, hasta el momento se ha demostrado una eficacia clínica limitada en las indicaciones de tumores sólidos, y cada vez es más evidente que los modelos preclínicos individuales no predicen con precisión la farmacodinámica y la eficacia clínica de un medicamento vivo 2,3. Por lo tanto, los investigadores han comenzado a ampliar el estudio preclínico de los productos de células CAR-T para incluir evaluaciones paralelas en modelos de xenoinjertos y singénicos de cánceres humanos y murinos, respectivamente.

A diferencia de los modelos de xenoinjertos, en los que los tumores humanos y las células T se injertan en ratones inmunodeficientes, los modelos singénicos permiten examinar las respuestas de las células CAR-T en el contexto de un sistema inmunitario funcional. Específicamente, los ratones inmunocompetentes portadores de tumores singénicos proporcionan un sistema para estudiar la interacción entre las células T transferidas adoptivamente y los entornos específicos del contexto, incluidos los macrófagos asociados al tumor (TAM) y las células T reguladoras (Treg) que se sabe que suprimen la función de las células T en el microambiente tumoral (TME)4,5,6. Además, los modelos singénicos ofrecen una plataforma adicional para evaluar la toxicidad en el objetivo, fuera del tumor y la interacción de las células CAR-T con los factores del huésped que pueden conducir a toxicidades adicionales, incluido el síndrome de liberación de citocinas7.

A pesar de estas ventajas, el número de estudios de células CAR-T singénicas sigue siendo limitado. En particular, los modelos singénicos requieren ingeniería autóloga de células CAR-T de la misma cepa de ratón y, por lo tanto, presentan un desafío adicional debido a la falta de metodología para la transducción eficiente de células T murinas y la expansión ex vivo 2,8. Este protocolo describe los métodos para lograr una expresión estable de CAR a través de la producción de vectores retrovirales y la transducción optimizada de células T. En la Figura 1 se muestra un esquema de todo el proceso. El uso de este enfoque demuestra la transducción retroviral eficiente de células CAR-T murinas y el logro de una alta expresión de CAR sin la necesidad de concentración viral a través de la ultracentrifugación. Se discuten estrategias para cambiar la especificidad antigénica de la construcción CAR, además de la coexpresión de transgenes adicionales.

Protocol

Todos los procedimientos con animales se realizaron con la aprobación del Comité Institucional de Cuidado y Uso de Animales (Universidad de Columbia, protocolos AC-AABQ5551 y AC-AAAZ4470) utilizando ratones hembras BALB/c o CF57BL/6 de 6-8 semanas de edad con un peso de entre 20-25 g. Los animales se obtuvieron de una fuente comercial (ver Tabla de Materiales). Este protocolo se estructura en torno a los “días posteriores a la activación” de las células T murinas, y la producción viral comienza en …

Representative Results

El protocolo descrito aquí tiene como objetivo estandarizar el proceso de transducción de células T murinas para la generación de células CAR-T de ratón. La Figura 1 proporciona una descripción detallada de los pasos involucrados. El proceso comienza con la producción de vectores retrovirales a través de la co-transfección de componentes virales en células Phoenix Eco. La Figura 2 proporciona una imagen de la densidad óptima de las células …

Discussion

Este protocolo describe los pasos y reactivos necesarios para la transducción retroviral de células T murinas para generar células CAR-T para estudios in vivo . La optimización de las condiciones de transducción retroviral logra una expresión robusta de CAR sin la necesidad de concentración viral a través de ultracentrifugación o reactivos adicionales. Sin embargo, existen múltiples modificaciones que se pueden aplicar a esta metodología.

Si bien este protocolo describe el …

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Agradecemos a L. Brockmann por la revisión crítica del manuscrito. Este trabajo fue apoyado por NIH 1R01EB030352 y UL1 TR001873.

Materials

0.45 μm filters MilliporeSigma SLHVR33RS
1 mL syringe  Fisher Scientific  14-955-450
1.5 mL microcentrifuge tubes  Fisher Scientific  05-408-135
10 mL syringe  BD 14-823-16E
100 μm strainer Corning 07-201-432
15 cm TC treated cell culture dishes ThermoFisher Scientific  130183
15 mL conical tubes  Falcon 14-959-70C
40 μm strainer  Corning 07-201-430
50 mL conical tubes  Falcon 14-959-49A
70 μm strainer Corning 07-201-431
Attune NxT Flow Cytometer  ThermoFisher Scientific 
BALB/C, 6-8 week old  Jackson Laboratory 651
B-Mercaptoethanol  Gibco 21985023
Bovine Serum Albumin  GOLDBIO A-420-500
DMEM Medium Gibco 11965092
Dulbecco's Phosphate Buffered Saline (PBS), without Calcium and Magnesium  Gibco 14-190-250
DynaMag-2 Magnet  Invitrogen 12-321-D
EasySep Magnet  Stemcell Technologies 18000
EasySep Mouse T cell Isolation Kit Stemcell Technologies 19851
FACS buffer  BD BDB554657
Fetal bovine serum (FBS)  Corning MT35011CV
GlutaMAX Gibco 35-050-061
G-Rex6 Wilson Wolf 80240M 
HEPES Buffer Solution  Gibco 15-630-080
Human recombinant IL-15  Miltenyi Biotec 130-095-765
Human recombinant IL-2 Miltenyi Biotec 130-097-748
Human recombinant IL-7 Miltenyi Biotec 130-095-363
Lipofectamine 3000 Invitrogen L3000008
MEM Non-Essential Amino Acids Solution  Gibco 11140-050
Mouse Anti-CD3 BV421 Biolegend 100228
Mouse Anti-CD3/CD28 Dynabeads Gibco 11-453-D
Mouse Anti-CD4 BV605 BD 563151
Mouse Anti-CD44 APC  Biolegend 103011
Mouse Anti-CD62L PE-Cy7 Tonbo SKU 60-0621-U025
Mouse Anti-CD8 APC-Cy7 Tonbo SKU 25-0081-U025
Nikon Ti2 with Prime 95B camera  Nikon
Non-treated 24 well plates  CytoOne CC7672-7524
Opti-MEM Gibco 31-985-062
pCL-Eco Addgene #12371
Penicillin/Streptomycin Solution Gibco 15-070-063
Phoenix Eco cells ATCC CRL-3214
pMDG.2 Addgene #12259
pMSCV_PGK_GFP28z N/A Produced by R.LV.
Purified sfGFP N/A Produced by R.LV.
RetroNectin ('transduction reagent') Takara Bio T100B
RPMI 1640 Gibco 21875
Serological pipette 10 mL Fisher Scientific  13-678-11E
Serological pipette 25 mL Fisher Scientific  13-678-11
Serological pipette 5 mL Fisher Scientific  13-678-11D
Sodium Pyruvate Gibco 11-360-070
TC-treated 24 well plates  Corning 08-772-1
Trypan blue  Gibco 15-250-061

Riferimenti

  1. June, C. H., Sadelain, M. Chimeric antigen receptor therapy. N Engl J Med. 379 (1), 64-73 (2018).
  2. Duncan, B. B., Dunbar, C. E., Ishii, K. Applying a clinical lens to animal models of car-t cell therapies. Mol Ther Methods Clin Dev. 27, 17-31 (2022).
  3. Hou, A. J., Chen, L. C., Chen, Y. Y. Navigating CAR-T cells through the solid-tumour microenvironment. Nat Rev Drug Discov. 20 (7), 531-550 (2021).
  4. Campesato, L. F., et al. Blockade of the ahr restricts a treg-macrophage suppressive axis induced by l-kynurenine. Nat Commun. 11 (1), 4011 (2020).
  5. Kaneda, M. M., et al. Pi3kgamma is a molecular switch that controls immune suppression. Nature. 539 (7629), 437-442 (2016).
  6. Hyrenius-Wittsten, A., Roybal, K. T. Paving new roads for cars. Trends Cancer. 5 (10), 583-592 (2019).
  7. Giavridis, T., et al. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by il-1 blockade. Nat Med. 24 (6), 731-738 (2018).
  8. Lanitis, E., et al. Optimized gene engineering of murine CAR-T cells reveals the beneficial effects of il-15 coexpression. J Exp Med. 218 (2), e20192203 (2021).
  9. Lambeth, C. R., White, L. J., Johnston, R. E., De Silva, A. M. Flow cytometry-based assay for titrating dengue virus. J Clin Microbiol. 43 (7), 3267-3272 (2005).
  10. Agarwal, S., Wellhausen, N., Levine, B. L., June, C. H. Production of human crispr-engineered CAR-T cells. J Vis Exp. 169, e62299 (2021).
  11. JoVE Science Education Database. Lab Animal Research. Sterile Tissue Harvest. , (2023).
  12. Giordano-Attianese, G., et al. A computationally designed chimeric antigen receptor provides a small-molecule safety switch for t-cell therapy. Nat Biotechnol. 38 (4), 426-432 (2020).
  13. Kuhn, N. F., et al. Cd40 ligand-modified chimeric antigen receptor T cells enhance antitumor function by eliciting an endogenous antitumor response. Cancer Cell. 35 (3), 473-488.e6 (2019).
  14. Jin, C., Ma, J., Ramachandran, M., Yu, D., Essand, M. CAR T cells expressing a bacterial virulence factor trigger potent bystander antitumour responses in solid cancers. Nat Biomed Eng. 6 (7), 830-841 (2022).
  15. Kurachi, M., et al. Optimized retroviral transduction of mouse T cells for in vivo assessment of gene function. Nat Protoc. 12 (9), 1980-1998 (2017).
  16. Jafarzadeh, L., Masoumi, E., Fallah-Mehrjardi, K., Mirzaei, H. R., Hadjati, J. Prolonged persistence of chimeric antigen receptor (CAR) T cell in adoptive cancer immunotherapy: Challenges and ways forward. Front Immunol. 11, 702 (2020).
  17. Elkassar, N., Gress, R. E. An overview of IL-7 biology and its use in immunotherapy. J Immunotoxicol. 7 (1), 1-7 (2010).
  18. Osinalde, N., et al. Simultaneous dissection and comparison of IL-2 and IL-15 signaling pathways by global quantitative phosphoproteomics. Proteomics. 15 (2-3), 520-531 (2015).
  19. Eremenko, E., et al. An optimized protocol for the retroviral transduction of mouse CD4 T cells. STAR Protoc. 2 (3), 100719 (2021).
  20. Lewis, M. D., et al. A reproducible method for the expansion of mouse CD8+ T lymphocytes. J Immunol Methods. 417, 134-138 (2015).
check_url/it/65887?article_type=t

Play Video

Citazione di questo articolo
Vincent, R. L., Li, F., Ballister, E. R., Arpaia, N., Danino, T. Efficient Generation of Murine Chimeric Antigen Receptor (CAR)-T Cells. J. Vis. Exp. (204), e65887, doi:10.3791/65887 (2024).

View Video