Summary

成体マウス脊髄からの純粋なアストロサイトおよびミクログリアの単離(Isolation of Pure Astrocytes and Microglia from the Adult Mouse Spinal Cord for the In Vitro Assays and Transcriptomic Studies)

Published: October 20, 2023
doi:

Summary

このプロトコルはRNAの分析および細胞培養のようなそれに続く適用を促進する大人のマウス脊髄からの浄化されたastrocytesそしてミクログリアの隔離を概説する。これには、単離された細胞の品質と収量の両方を向上させるように設計された詳細な細胞解離方法と手順が含まれています。

Abstract

アストロサイトとミクログリアは、中枢神経系の発達、損傷反応、神経変性疾患において極めて重要な役割を果たしています。これらの非常に動的な細胞は、環境変化に迅速に応答し、形態、転写プロファイル、および機能の点で有意な不均一性を示します。健康と疾患におけるグリア細胞の機能に関する理解は大幅に進歩しましたが、異なる細胞集団を包括的に特徴付けるために、侮辱または損傷の文脈で実施される in vitroの細胞特異的分析の必要性が残っています。成体マウスから細胞を単離すると、病理学的条件下および特定の時点での細胞の分析が可能になるため、細胞株や新生児動物に比べていくつかの利点があります。さらに、脳病変を除いた脊髄特異的な単離に着目することで、実験的自己免疫性脳脊髄炎、脊髄損傷、筋萎縮性側索硬化症などの脊髄病態の研究が可能になります。このプロトコルは、成体マウスの脊髄からアストロサイトとミクログリアを分離するための効率的な方法を示し、機能的、分子的、またはプロテオミクス下流研究における潜在的なアプリケーションとの即時または将来の分析を促進します。

Introduction

アストロサイトとミクログリアは、中枢神経系(CNS)で重要な役割を果たす汎用性の高いグリア細胞であり、神経機能の調節、中枢神経系の発達への寄与、血液脳関門の維持、その他の重要なプロセスへの参加などの役割を担っています1,2,3,4.これらのグリア細胞は、ホメオスタシスの維持における役割に加えて、損傷や修復のメカニズムにおいても極めて重要な役割を果たしています。ミクログリアは、侮辱や傷害に続く貪食、炎症、および遊走能力でよく知られています5,6,7。疾患におけるアストロサイトの応答も同様に多様であり、炎症、グリア瘢痕の形成、および血液脳関門の損傷への寄与を網羅しています8,9。中枢神経系におけるミクログリアとアストロサイトの有害および修復的な役割についての理解は深まっていますが、それらの構造と機能の両方に固有の不均一性は、さまざまな状況でそれらを研究するための堅牢なツールを必要とします。

健康と疾患におけるミクログリアとアストロサイトの役割についてさらに洞察を得るには、 in vivoin vitro での研究を組み合わせたアプローチが必要です。 in vivo 法では、中枢神経系内のグリア細胞とニューロン間の複雑なクロストークを活用し、 in vitro の方法論は、特定の刺激下での単一細胞の機能や応答を評価する際に有用であることが証明されています。それぞれの方法には独自の利点があります。 in vitro 研究は、隣接する細胞からの直接的または間接的なインプットなしに、これらの細胞タイプの特定の役割を理解するために不可欠です。さらに、不死化細胞株を用いた in vitro アッセイは、無期限に増殖する能力、費用対効果、メンテナンスの容易さなど、一定の利点をもたらします。ただし、初代細胞は細胞株と比較して、正常な生理学的応答をより厳密に模倣していることに注意することが重要です。この生理学的関連性は、機能アッセイやトランスクリプトーム解析において非常に重要です。

特に成体マウスの脊髄から初代細胞を得る際の課題の1つは、サンプルの量と生存率にあります。成人の脊髄は、脳よりも小さく、かなりの量のミエリンを含んでいるため、独特の困難があります。新生仔動物または成体マウスの脳からの純粋で生存可能なグリア細胞の分離を詳述するいくつかの公開プロトコルがありますが10,11,12,13、これらの方法論は、脊髄に特異的な疾患や損傷の研究には適していない可能性があります。このプロトコルでは、成体マウスの脊髄から純粋で生存可能なミクログリアとアストロサイトを効率的に分離するための包括的な手順を提供し、細胞培養およびトランスクリプトーム解析におけるダウンストリームアプリケーションを促進します。このプロトコルは、10週から5ヶ月の成体マウスからこれらの細胞を単離するために使用され、条件付きノックアウトマウス、薬物反応、発生研究、加齢モデルを含む研究など、さまざまな状況でその有用性を実証しています。

Protocol

すべての動物飼育および実験手順は、ジョージワシントン大学医学部および健康科学部(米国ワシントンD.C.;IACUC#2021-004)です。この研究では、生後10週間から5ヶ月の雌雄のC57BL/6J野生型(WT)マウスを使用し、ジョージワシントン大学に収容された商業サプライヤー( 資料表を参照)から調達しました。プロトコルのワークフローの概要を 図1に示します。 <p clas…

Representative Results

このプロトコルで概説されている方法は、成体マウス脊髄から純粋で生存可能なミクログリアおよびアストロサイトの単離を可能にし、 in vitro の機能的または組織学的アッセイやRNA分析など、さまざまなダウンストリームアプリケーションを促進します。 in vitro試験の単離が成功すると、数日間にわたって細胞が連続的に増殖します。成体細胞は、新生児?…

Discussion

純粋で生存可能な初代細胞の単離は、特定の細胞タイプの構造と機能を調べるために最も重要です。成体マウス、特に脊髄では、既存のプロトコルが成体の脊髄に合わせて調整されていないことが多いため、このタスクは重大な課題を提起します10,17。このプロトコルは、細胞培養、フローサイトメトリー、組織学、トランスクリプトーム研究など…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

ジョージ・ワシントン大学ゲノミクス・コアの Castle Raley 氏には RNA 解析を、Q2 Lab Solutions には RNA シーケンシング解析をお願いいたします。この研究は、National Institute of Neurological Disorders and Stroke [grant number F31NS117085] と Vivian Gill Research Endowment to Dr. Robert H. Miller の支援を受けた。 図 1 は BioRender.com で作成されました。

Materials

2,2,2-Tribromoethanol Sigma Aldrich T48402
24 well tissue culture plate Avantor 10861-558
2-Methyl-2-butanol, 98% Thermo Fisher A18304-0F
4',6-Diamidino-2-Phenylindole, Dihydrochloride Invitrogen D1306 1:1000
45% glucose solution Corning 25-037-CI
5 mL capped tubes Eppendorf 30122305
Acetic acid Sigma-Adlrich A6283
Adult Brain Dissociation Kit Miltenyi 103-107-677
Anti-ACSA2 Microbead Kit Miltenyi 130-097-679
Anti-Iba1 Wako 019-1974
Bioanalyzer Agilent Technologies G2939BA
C57BL/6J wild-type (WT) mice  Jackson Laboratories
CD11b (Microglia) MicroBeads Miltenyi 130-093-634
Celltrics 30 µm filter Sysmex Partec 04-004-2326
Counting Chamber (Hemacytometer) Hausser Scientific Co 3200
Deoxyribonuclease I from bovine pancreas Sigma Aldrich D4527-40KU
Distilled water TMO 15230001
DMEM/F12 Thermo Fisher 11320074
DNase for RNA purification Qiagen 79254
Dulbecco's phosphate-buffered saline Thermo Fisher 14040117
Fetal bovine serum Thermo Fisher A5209401
GFAP antibody (mouse) Santa Cruz sc-33673 1:500
GFAP antibody (rabbit) Dako Z0334 1:500
Goat anti-mouse 594 IgG Invitrogen a11032 1:500
Goat anti-mouse 594 IgM Invitrogen a21044 1:300
Goat anti-Rabbit 488 IgG Invitrogen a11008 1:500
Iba1 antibody (rabbit) Wako 019-1974 1:500
MACS Separator Miltenyi 130-042-303
Masterflex C/L Pump System Thermo Fisher 77122-22
MEM Corning 15-015-CV
Methanol Sigma-Adlrich 439193
Mounting Medium Vector Laboratories H-1000-10
MS Columns Miltenyi 130-042-401
O4 Antibody R&D MAB1326
Penicillin-Streptomycin Gibco 15070063
Plugged 9" glass pasteur pipette VWR 14672-412
RNeasy Plus Micro Kit Qiagen 74034
Royal-tek Surgical scalpel blade no. 10 Fisher scientific 22-079-683
Small Vein Infusion Set, 23 G x 19 mm Kawasumi D3K2-23G

Riferimenti

  1. Abbott, N. J., Rönnbäck, L., Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 7, 41-53 (2006).
  2. Heithoff, B. P., et al. Astrocytes are necessary for blood-brain barrier maintenance in the adult mouse brain. Glia. 69 (2), 436-472 (2021).
  3. Badimon, A., et al. Negative feedback control of neuronal activity by microglia. Nature. 586, 417-423 (2020).
  4. Yanuck, S. F. Microglial phagocytosis of neurons: diminishing neuronal loss in traumatic, infectious, inflammatory, and autoimmune CNS disorders. Front Psychiatry. 10, 712 (2019).
  5. Xu, Y. J., Au, N. P. B., Ma, C. H. E. Functional and phenotypic diversity of microglia: implication for microglia-based therapies for alzheimer’s disease. Front Aging Neurosci. 14, 896852 (2022).
  6. Song, S., et al. Microglial-oligodendrocyte interactions in myelination and neurological function recovery after traumatic brain injury. J Neuroinflammation. 19 (1), 246 (2022).
  7. Butler, C. A., et al. Microglial phagocytosis of neurons in neurodegeneration, and its regulation. J Neurochem. 158 (3), 621-639 (2021).
  8. Voskuhl, R. R., et al. Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS. J Neurosci. 29 (37), 11511-11522 (2009).
  9. Bordon, Y. MAFG activity in astrocytes drives CNS inflammation. Nature Reviews Immunology. 20, 205 (2020).
  10. Agalave, N. M., Lane, B. T., Mody, P. H., Szabo-Pardi, T. A., Burton, M. D. Isolation, culture, and downstream characterization of primary microglia and astrocytes from adult rodent brain and spinal cord. J Neurosci Methods. 340, 108742 (2020).
  11. Kerstetter, A. E., Miller, R. H. Isolation and culture of spinal cord astrocytes. Methods in Molecular Biology. 814, 93-104 (2012).
  12. Hersbach, B. A., Simon, T., Masserdotti, G. Isolation and direct neuronal reprogramming of mouse astrocytes. J Vis Exp. (185), 64175 (2022).
  13. Nikodemova, M., Watters, J. J. Efficient isolation of live microglia with preserved phenotypes from adult mouse brain. J Neuroinflammation. 9, 147 (2012).
  14. Richner, M., Jager, S. B., Siupka, P., Vaegter, C. B. Hydraulic extrusion of the spinal cord and isolation of dorsal root ganglia in rodents. J Vis Exp. (119), e55226 (2017).
  15. Davies, J., Denyer, T., Hadfield, J. Bioanalyzer chips can be used interchangeably for many analyses of DNA or RNA. Biotechniques. 60 (4), 197-199 (2016).
  16. Ahn, J. J., Islam, Y., Miller, R. H. Cell type specific isolation of primary astrocytes and microglia from adult mouse spinal cord. J Neurosci Methods. 375, 109599 (2022).
  17. Pan, J., Wan, J. Methodological comparison of FACS and MACS isolation of enriched microglia and astrocytes from mouse brain. J Immunol Methods. 486, 112834 (2020).
  18. Neuschulz, A., et al. A single-cell RNA labeling strategy for measuring stress response upon tissue dissociation. Mol Syst Biol. 19, 11147 (2023).
  19. CB, S., et al. One brain-all cells: a comprehensive protocol to isolate all principal cns-resident cell types from brain and spinal cord of adult healthy and EAE mice. Cells. 10 (3), 1-25 (2021).
check_url/it/65893?article_type=t

Play Video

Citazione di questo articolo
Ahn, J. J., Miller, R. H., Islam, Y. Isolation of Pure Astrocytes and Microglia from the Adult Mouse Spinal Cord For In Vitro Assays and Transcriptomic Studies. J. Vis. Exp. (200), e65893, doi:10.3791/65893 (2023).

View Video