Summary

Acquiring Hyperpolarized 129Xe Magnetic Resonance Images of Lung Ventilation

Published: November 21, 2023
doi:

Summary

Hyperpolarized 129Xe magnetic resonance imaging (MRI) is a method for studying regionally resolved aspects of pulmonary function. This work presents an end-to-end standardized workflow for hyperpolarized 129Xe MRI of lung ventilation, with specific attention to pulse sequence design, 129Xe dose preparation, scan workflow, and best practices for subject safety monitoring.

Abstract

Hyperpolarized 129Xe MRI comprises a unique array of structural and functional lung imaging techniques. Technique standardization across sites is increasingly important given the recent FDA approval of 129Xe as an MR contrast agent and as interest in 129Xe MRI increases among research and clinical institutions. Members of the 129Xe MRI Clinical Trials Consortium (Xe MRI CTC) have agreed upon best practices for each of the key aspects of the 129Xe MRI workflow, and these recommendations are summarized in a recent publication. This work provides practical information to develop an end-to-end workflow for collecting 129Xe MR images of lung ventilation according to the Xe MRI CTC recommendations. Preparation and administration of 129Xe for MR studies will be discussed and demonstrated, with specific topics including choice of appropriate gas volumes for entire studies and for individual MR scans, preparation and delivery of individual 129Xe doses, and best practices for monitoring subject safety and 129Xe tolerability during studies. Key MR technical considerations will also be covered, including pulse sequence types and optimized parameters, calibration of 129Xe flip angle and center frequency, and 129Xe MRI ventilation image analysis.

Introduction

Hyperpolarized 129Xe MRI is an exciting tool for non-invasive, spatially-resolved characterization and quantification of specific aspects of pulmonary function1,2,3. Acquisition and reconstruction approaches similar to those used in anatomical proton MRI yield images of inhaled 129Xe in the lungs, permitting visualization of non-ventilated lung regions and region-resolved quantification of ventilation distribution4,5,6,7,8. More advanced pulse sequence and analysis techniques yield further complementary information, including quantification of gas-exchange efficacy between alveoli and pulmonary capillaries via spectroscopic MRI9,10,11,12,13 and characterization of alveolar microstructure integrity via diffusion-weighted MRI14,15,16.

Inhaled 129Xe has been proven safe and tolerable in adult and pediatric subjects, including those with pulmonary disease17,18. Measurements of lung function derived from 129Xe MRI have shown sensitivity to structural and functional alterations in many pulmonary disease contexts, including chronic obstructive pulmonary disease6,10,19, cystic fibrosis20,21,22, idiopathic pulmonary fibrosis23,24,25, and asthma7,10,26. Given the high safety and tolerability of 129Xe MRI, the lack of ionizing radiation in MRI compared with other common imaging approaches, and the high reproducibility of 129Xe MRI results27,28, 129Xe MRI holds significant promise, in particular for precise serial monitoring of individuals receiving a time course of therapy for chronic pulmonary disease.

The safety and clinical promise of 129Xe MRI have led to its FDA approval in December 2022 for lung ventilation imaging in persons aged 12 years and older29. Given this, it is anticipated that the number of research and clinical sites capable of performing 129Xe MRI (currently ~20 worldwide) will increase significantly over the coming years. As 129Xe MRI spreads to new institutions, it is important that robust methodological resources exist to allow sites to build out clinically relevant 129Xe MRI techniques quickly and to perform scans and generate results that are closely comparable with those of existing sites.

In this work, we will outline the current best practices for human hyperpolarized 129Xe MRI of lung ventilation, as agreed upon by member institutions of the 129Xe MRI Clinical Trials Consortium (Xe MRI CTC) and summarized in a recent position paper30. Topics will include the preparation of tailored pulse sequences ideal for a complete 129Xe MRI workflow, preparation, and administration of hyperpolarized 129Xe gas, an optimized workflow for human 129Xe MRI sessions, and best practices for monitoring subject safety and comfort during MRI sessions.

Protocol

All research involving human subjects must be approved by an institutional review board (IRB). IRB involvement is not necessary for regulatory-approved clinical use of 129Xe MRI. Before participating in a research study, prospective subjects must be provided with an approved informed consent document. The person obtaining consent must explain the contents of the document, including the purpose, procedures, benefits, and risks of the study, must answer any questions, and must obtain consent from the subject to …

Representative Results

Figure 1 shows representative ventilation and three-plane localizer images from a healthy individual. High 129Xe signal can be observed throughout the lungs in the ventilation images, and no ventilation impairment is evident in this individual. Figure 2, Figure 3, and Figure 4 show representative ventilation and anatomical images from diseased individuals. <strong …

Discussion

The ventilation and anatomical MRI approaches outlined above are designed to maximize image quality and SNR while maintaining simplicity of implementation – these sequence protocols can in general be adapted from vendor product pulse sequences, provided multinuclear operation is enabled, and images will automatically reconstruct on the scanner computer. One disadvantage of the 2D approaches described here is the use of slice-selective excitation RF pulses, which introduces signal differences between slices collected earl…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This work was funded by the National Institutes of Health (grant numbers R01-CA172595-01, R01-HL132177, R01-HL167202, S10-OD018079, and UL1-TR003015) and by Siemens Medical Solutions.

Materials

1.5T or 3T human MRI scanner Siemens MAGNETOM Symphony (1.5T) or Vida (3T); older models fine, as long as multinuclear option is/can be installed; scanners also available from GE and Philips
129Xe hyperpolarizer Polarean 9820
129Xe MRI phantom
129Xe MRI vest coil Clinical MR Solutions Also available from other vendors
129Xe polarization measurement station Polarean 2881
1H MRI phantom
Coil file for 129Xe MRI vest coil Also available from other vendors for their respective coils
ECG machine
Helium buffer gas
Interface box from coil to scanner May be built into coil, but needs to be included separately if not
Liquid nitrogen
MRI-safe pulse oximeter Philips Expression MR200
Nitrogen buffer gas
PFT machine
Programming/image analysis software MATLAB R2023a Various other options available
Pulse sequence design software Siemens IDEA software package; also available from GE and Philips for their respective scanners
Scanner multinuclear option Siemens Scanner integrated hardware/software package; also available from GE and Philips for their respective scanners
Tedlar gas sampling bags (500, 750, 1000, 1250, 1500 mL)
Xenon gas (129Xe isotopically enriched)

Riferimenti

  1. Roos, J. E., McAdams, H. P., Kaushik, S. S., Driehuys, B. Hyperpolarized gas MRI: Technique and applications. Magn Reson Imaging Clin N Am. 23 (2), 217-229 (2015).
  2. Mugler, J. P., Altes, T. A. Hyperpolarized 129Xe MRI of the human lung. J Magn Reson Imaging. 37 (2), 313-331 (2013).
  3. Ebner, L., et al. The role of hyperpolarized 129xenon in MR imaging of pulmonary function. Eur J Radiol. 86, 343-352 (2017).
  4. He, M., Driehuys, B., Que, L. G., Huang, Y. C. T. Using hyperpolarized 129Xe MRI to quantify the pulmonary ventilation distribution. Acad Radiol. 23 (12), 1521-1531 (2016).
  5. Walkup, L. L., et al. Xenon-129 MRI detects ventilation deficits in paediatric stem cell transplant patients unable to perform spirometry. Eur Respir J. 53 (5), 1801779 (2019).
  6. Virgincar, R. S., et al. Quantitative analysis of hyperpolarized 129Xe ventilation imaging in healthy volunteers and subjects with chronic obstructive pulmonary disease. NMR Biomed. 26 (4), 424-435 (2013).
  7. Ebner, L., et al. Hyperpolarized 129Xenon magnetic resonance imaging to quantify regional ventilation differences in mild to moderate Asthma: A prospective comparison between semiautomated ventilation defect percentage calculation and pulmonary function tests. Invest Radiol. 52 (2), 120-127 (2017).
  8. Woodhouse, N., et al. Combined helium-3/proton magnetic resonance imaging measurement of ventilated lung volumes in smokers compared to never-smokers. J Magn Reson Imaging. 21 (4), 365-369 (2005).
  9. Mugler, J. P., et al. Simultaneous magnetic resonance imaging of ventilation distribution and gas uptake in the human lung using hyperpolarized xenon-129. Proc Natl Acad Sci U S A. 107 (50), 21707-21712 (2010).
  10. Qing, K., et al. Assessment of lung function in asthma and COPD using hyperpolarized 129Xe chemical shift saturation recovery spectroscopy and dissolved-phase MRI. NMR Biomed. 27 (12), 1490-1501 (2014).
  11. Cleveland, Z. I., et al. Hyperpolarized 129Xe MR imaging of alveolar gas uptake in humans. PLoS One. 5 (8), 12192 (2010).
  12. Wang, Z., et al. Using hyperpolarized 129Xe gas-exchange MRI to model the regional airspace, membrane, and capillary contributions to diffusing capacity. J Appl Physiol. 130 (5), 1398-1409 (2021).
  13. Guan, S., et al. 3D single-breath chemical shift imaging hyperpolarized Xe-129 MRI of healthy, CF, IPF, and COPD subjects. Tomography. 8 (5), 2574-2587 (2022).
  14. Ouriadov, A., et al. Lung morphometry using hyperpolarized (129) Xe apparent diffusion coefficient anisotropy in chronic obstructive pulmonary disease. Magn Reson Med. 70 (129), 1699-1706 (2013).
  15. Yablonskiy, D. A., Sukstanskii, A. L., Quirk, J. D., Woods, J. C., Conradi, M. S. Probing lung microstructure with hyperpolarized noble gas diffusion MRI: theoretical models and experimental results. Magn Reson Med. 71 (2), 486-505 (2014).
  16. Chan, H. F., Stewart, N. J., Norquay, G., Collier, G. J., Wild, J. M. 3D diffusion-weighted 129 Xe MRI for whole lung morphometry. Magn Reson Med. 79 (6), 2986-2995 (2018).
  17. Walkup, L. L., et al. tolerability and safety of pediatric hyperpolarized 129Xe magnetic resonance imaging in healthy volunteers and children with cystic fibrosis. Pediatr Radiol. 46 (12), 1651-1662 (2016).
  18. Driehuys, B., et al. Chronic obstructive pulmonary disease: safety and tolerability of hyperpolarized 129Xe MR imaging in healthy volunteers and patients. Radiology. 262 (1), 279-289 (2012).
  19. Myc, L., et al. Characterisation of gas exchange in COPD with dissolved-phase hyperpolarised xenon-129 MRI. Thorax. 76 (2), 178-181 (2021).
  20. Kaushik, S. S., et al. Measuring diffusion limitation with a perfusion-limited gas-Hyperpolarized 129Xe gas-transfer spectroscopy in patients with idiopathic pulmonary fibrosis. J Appl Physiol. 117 (6), 577-585 (2014).
  21. Dournes, G., et al. The clinical use of lung MRI in cystic fibrosis: What, now, how. Chest. 159 (6), 2205-2217 (2021).
  22. Thomen, R. P., et al. Hyperpolarized 129Xe for investigation of mild cystic fibrosis lung disease in pediatric patients. J Cyst Fibros. 16 (2), 275-282 (2017).
  23. Mammarappallil, J. G., Rankine, L., Wild, J. M., Driehuys, B. New developments in imaging idiopathic pulmonary fibrosis with hyperpolarized xenon magnetic resonance imaging. J Thorac Imaging. 34 (2), 136-150 (2019).
  24. Rankine, L. J., et al. 129Xenon gas exchange magnetic resonance imaging as a potential prognostic marker for progression of idiopathic pulmonary fibrosis. Ann Am Thorac. 17 (1), 121-125 (2020).
  25. Mata, J., et al. Evaluation of regional lung function in pulmonary fibrosis with xenon-129 MRI. Tomography. 7 (3), 452-465 (2021).
  26. Svenningsen, S., et al. Hyperpolarized (3) He and (129) Xe MRI: Differences in asthma before bronchodilation. J Magn Reson Imaging. 38 (3), 1521-1530 (2013).
  27. Stewart, N. J., et al. Comparison of 3He and 129Xe MRI for evaluation of lung microstructure and ventilation at 1.5T. J Magn Reson Imaging. 48 (3), 632-642 (2018).
  28. Hughes, P. J. C., et al. Assessment of the influence of lung inflation state on the quantitative parameters derived from hyperpolarized gas lung ventilation MRI in healthy volunteers. J Appl Physiol. 126 (1), 183-192 (2019).
  29. Polarean. . FDA Approves Polarean’s XENOVIEWTM (xenon Xe 129 hyperpolarized) for use with MRI for the evaluation of lung ventilation. , (2022).
  30. Niedbalski, P. J., et al. Protocols for multi-site trials using hyperpolarized 129Xe MRI for imaging of ventilation, alveolar-airspace size, and gas exchange: A position paper from the 129Xe MRI clinical trials consortium. Magn Reson Med. 86 (6), 2966-2986 (2021).
  31. Bier, E. A., et al. A thermally polarized 129 Xe phantom for quality assurance in multi-center hyperpolarized gas MRI studies. Magn Reson Med. 82 (5), 1961-1968 (2019).
  32. He, M., et al. Dose and pulse sequence considerations for hyperpolarized 129Xe ventilation MRI. Magn Reson Imaging. 33 (7), 877-885 (2015).
  33. Tustison, N. J., et al. Image- versus histogram-based considerations in semantic segmentation of pulmonary hyperpolarized gas images. Magn Reson Med. 86 (5), 2822-2836 (2021).
  34. Tustison, N. J., et al. Convolutional neural networks with template-based data augmentation for functional lung image quantification. Acad Radiol. 26 (3), 412-423 (2019).
  35. Wild, J. M., et al. Comparison between 2D and 3D gradient-echo sequences for MRI of human lung ventilation with hyperpolarized 3He. Magn Reson Med. 52 (3), 673-678 (2004).
  36. Willmering, M. M., et al. Improved pulmonary 129 Xe ventilation imaging via 3D-spiral UTE MRI. Magn Reson Med. 84 (1), 312-320 (2020).
  37. Collier, G. J., et al. Single breath-held acquisition of coregistered 3D 129 Xe lung ventilation and anatomical proton images of the human lung with compressed sensing. Magn Reson Med. 82 (1), 342-347 (2019).
  38. Zha, W., et al. Semiautomated ventilation defect quantification in exercise-induced bronchoconstriction using hyperpolarized helium-3 magnetic resonance imaging: a repeatability study. Acad Radiol. 23 (9), 1104-1114 (2016).
  39. Ray, N., Acton, S. T., Altes, T. A., de Lange, E. E., Brookeman, J. R. Merging parametric active contours within homogeneous image regions for MRI-based lung segmentation. IEEE Trans Med Imaging. 22 (2), 189-199 (2003).
  40. Hughes, P. J. C., et al. Spatial fuzzy c-means thresholding for semiautomated calculation of percentage lung ventilated volume from hyperpolarized gas and 1 H MRI. J Magn Reson Imaging. 47 (3), 640-646 (2018).
  41. Tustison, N. J., et al. Ventilation-based segmentation of the lungs using hyperpolarized (3)He MRI. J Magn Reson Imaging. 34 (3), 831-841 (2011).
  42. Kanhere, N., et al. Correlation of lung clearance index with hyperpolarized 129Xe magnetic resonance imaging in pediatric subjects with cystic fibrosis. Am J Respir Crit Care Med. 196 (8), 1073-1075 (2017).
  43. Rayment, J. H., et al. Hyperpolarised 129Xe magnetic resonance imaging to monitor treatment response in children with cystic fibrosis. Eur Respir J. 53 (5), 1802188 (2019).
check_url/it/65982?article_type=t

Play Video

Citazione di questo articolo
Garrison, W. J., Mugler III, J. P., Mata, J. F., Nunoo-Asare, R. N., Shim, Y. M., Miller, G. W. Acquiring Hyperpolarized 129Xe Magnetic Resonance Images of Lung Ventilation. J. Vis. Exp. (201), e65982, doi:10.3791/65982 (2023).

View Video