Summary

用于细胞球体批量生产的三维声学装配装置

Published: October 13, 2023
doi:

Summary

细胞球体被认为是生物应用领域的一种潜在模型。本文介绍了使用 3D 声学组装设备可扩展生成细胞球体的协议,它为稳定和快速地制造均匀细胞球体提供了一种有效的方法。

Abstract

细胞球体是有前途的三维(3D)模型,在许多生物领域获得了广泛的应用。该协议提出了一种通过机动程序使用 3D 声学组装装置制造高质量和高通量细胞球体的方法。声学组件装置由三个锆钛酸铅 (PZT) 换能器组成,每个换能器都布置在方形聚甲基丙烯酸甲酯 (PMMA) 腔室的 X/Y/Z 平面上。当施加三个信号时,这种配置可以生成悬浮声学节点 (LAN) 的 3D 点阵模式。因此,明胶甲基丙烯酰 (GelMA) 溶液中的细胞可以被驱动到 LAN,在三维空间中形成均匀的细胞聚集体。然后对 GelMA 溶液进行紫外光固化和交联,作为支持细胞聚集体生长的支架。最后,通过随后在温和条件下溶解 GelMA 支架来获得和回收大量成熟的球状体。拟议的新型3D声学细胞组装装置将能够放大细胞球体甚至类器官的制造,为生物领域提供巨大的潜力技术。

Introduction

与传统的 2D 培养模型相比,3D 体外培养模型提供了更多类似体内的结构和形态学特征,已被公认为各种生物医学应用(如组织工程、疾病建模和药物筛选)中的有前途的系统 1,2,3.作为 3D 培养模型的一种类型,细胞球体通常是指细胞聚集,创建以增强细胞-细胞和细胞-基质相互作用为特征的 3D 球状体结构 4,5,6。因此,制造细胞球体已成为实现各种生物学研究的有力工具。

已经开发了各种技术,包括悬挂液滴7、非粘性板8 或微孔装置9,以获得球状体。原则上,这些方法通常通过利用重力等物理力来促进细胞组装,同时最大限度地减少细胞与基材之间的相互作用。然而,它们通常涉及劳动密集型过程,生产率低,并且对控制球体大小10,11 提出了挑战。重要的是,生产具有所需尺寸和均匀性且数量足够的球状体对于满足特定的生物应用至关重要。与上述方法相比,声波作为一种外力驱动技术12,13,14,基于通过外力增强细胞聚集的原理,显示出大规模制造高质量和高通量细胞球体的潜力15,16,17,18.与电磁力或磁力不同,基于声学的细胞操作技术是非侵入性和无标记的,能够形成具有出色生物相容性的球状体19,20

通常,已经开发了基于驻置表面声波 (SAW) 和体声波 (BAW) 的器件来利用相应的驻置声场产生的声学节点 (AN)21,22,23 来生成球体。特别是基于BAW的声学组装装置,具有制造方便、操作方便、可扩展性好等优点,在制造细胞球体方面备受关注24,25。我们最近开发了一种基于 BAW 的简单声学组装装置,能够生成具有高通量的球体26。所提出的装置由一个方形聚甲基丙烯酸甲酯 (PMMA) 腔室组成,三个锆酸铅钛酸酯 (PZT) 探头分别布置在 X/Y/Z 平面上。这种布置可以创建悬浮声学节点 (LAN) 的 3D 点阵图案,用于驱动单元组装。与先前报道的基于 BAW 或 SAW 的设备相比,这些设备只能创建 ANs272829 的 1D 或 2D 阵列,本设备能够实现 LAN 的 3D 点阵列,用于在明胶甲基丙烯酰 (GelMA) 溶液中快速形成细胞聚集体。随后,经过三天的培养,细胞聚集体在光固化的 GelMA 支架内成熟为具有高活力的球状体。最后,从GelMA支架中可以很容易地获得大量大小均匀的球体,用于下游应用。

Protocol

1. 3D声学装配装置的制造 首先通过激光切割准备四个1毫米厚的PMMA片材30,然后继续将它们粘合在一起,形成一个内宽为21毫米,高度为10毫米的方形腔室。 接下来,将另一张 1 毫米厚的 PMMA 片材贴在腔室底部,作为生物墨水的支架。 小心地将三个锆钛酸铅 (PZT) 探头(每个长 20 毫米、宽 10 毫米、厚 0.7 毫米,初级谐振频率为 3 MHz,参见 <stron…

Representative Results

本研究设计了一种用于细胞球体大规模生产的 3D 声学组装装置。声学装置包括一个方形腔室,两个PZT换能器连接到腔室外表面的X平面和Y平面上,一个PZT换能器连接到腔室底部(图1A,B)。来自两个函数发生器的三个输出通道连接到三个功率放大器,以产生三个独立的正弦信号来驱动PZT传感器(图1C)。 用于驱动连接?…

Discussion

使用 3D 声学组装设备等技术高效稳定地制造具有高通量的细胞球体,为推进生物医学工程和药物筛选 1,2,3 带来了巨大的前景。这种方法通过简单的程序简化了细胞球体的大规模生产。

但是,使用此声学设备时需要考虑一些关键因素。驻波的产生对于构建3D点阵声场至关重要。在该设备中,每个维度中只有…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

本研究得到了国家重点研发计划(2022YFA1104600)和浙江省自然科学基金(LQ23H160011)的支持。

Materials

0.22-μm filter Merck SLGSM33SS Used for GelMA solution sterilization
35 mm-cell culture dish Corning 430165 Used for culturing cells
Confocal microscope Nikon A1RHD25 Fluorescent cell observation
DiO dye Beyotime C1038 Dye used to stain cells
DMEM Gibco 12430054 Cell culture media
FBS Gibco 10099141C Cell culture media supplement
Function generator Rigol DG5352 For RF signal generation
GelMA Regenovo none Used to prepare bioink
GelMA lysis buffer EFL EFL-GM-LS-001 Used to dissolve GelMA scaffolds
Inverted microscope Nikon Ti-U Cell observation
LAP Sigma-Aldrich 900889 Used as photoinitiator
Live-Dead kit Beyotime C2015M Cell vability analysis
PBS Gibco 10010002 Used as buffer
Penicillin-streptomycin Gibco 15070063 Prevent cell culture contamination
Power amplifer Minicircuit LCY-22+ Increase the voltage amplitude of the RF signal
PZT transducers Yantai Xingzhiwen Trading Co.,Ltd. PZT-41 Functional units for acoustic assembly device
T25 cell culture flask Corning 430639 Used for culturing cells
Trypan blue  Gibco 15250061 Cell counting
Trypsin-EDTA  Gibco 25200056 Cell dissociation enzyme

Riferimenti

  1. Eiraku, M., et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature. 472 (7341), 51-56 (2011).
  2. Lancaster, M. A., Knoblich, J. A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science. 345 (6194), 1247125 (2014).
  3. Habanjar, O., Diab-Assaf, M., Caldefie-Chezet, F., Delort, L. 3D cell culture systems: tumor application, advantages, and disadvantages. International Journal of Molecular Sciences. 22 (22), 12200 (2021).
  4. Decarli, M. C., et al. Cell spheroids as a versatile research platform: formation mechanisms, high throughput production, characterization and applications. Biofabrication. 13 (3), 032002 (2021).
  5. Lee, Y. B., et al. Engineering spheroids potentiating cell-cell and cell-ECM interactions by self-assembly of stem cell microlayer. Biomaterials. 165, 105-120 (2018).
  6. Zhuang, P., Chiang, Y. H., Fernanda, M. S., He, M. Using spheroids as building blocks towards 3d bioprinting of tumor microenvironment. International Journal of Bioprinting. 7 (4), 444 (2021).
  7. Foty, R. A simple hanging drop cell culture protocol for generation of 3D spheroids. Journal of Visualized Experiments. 51, e2720 (2011).
  8. Laschke, M. W., Menger, M. D. Life is 3D: boosting spheroid function for tissue engineering. Trends in Biotechnology. 35 (2), 133-144 (2017).
  9. Fu, W., et al. Combinatorial drug screening based on massive 3d tumor cultures using micropatterned array chips. Analytical Chemistry. 95 (4), 2504-2512 (2023).
  10. Kang, S. M., Kim, D., Lee, J. H., Takayama, S., Park, J. Y. Engineered microsystems for spheroid and organoid studies. Advanced Healthcare Materials. 10 (2), 2001284 (2021).
  11. Kim, S. J., Kim, E. M., Yamamoto, M., Park, H., Shin, H. Engineering multi-cellular spheroids for tissue engineering and regenerative medicine. Advanced Healthcare Materials. 9 (23), 2000608 (2020).
  12. Yang, Y., et al. 3D acoustic manipulation of living cells and organisms based On 2D array. IEEE Transactions on Biomedical Engineering. 69 (7), 2342-2352 (2022).
  13. Armstrong, J. P. K., et al. Engineering anisotropic muscle tissue using acoustic cell patterning. Advanced Materials. 30 (43), 1802649 (2018).
  14. Drinkwater, B. W. A perspective on acoustical tweezers-devices, forces, and biomedical applications. Applied Physics Letters. 117 (18), 180501 (2020).
  15. Bouyer, C., et al. A Bio-Acoustic Levitational (BAL) assembly method for engineering of multilayered, 3d brain-like constructs, using human embryonic stem cell derived neuro-progenitors. Advanced Materials. 28 (1), 161-167 (2016).
  16. Chansoria, P., Narayanan, L. K., Schuchard, K., Shirwaiker, R. Ultrasound-assisted biofabrication and bioprinting of preferentially aligned three-dimensional cellular constructs. Biofabrication. 11 (3), 035015 (2019).
  17. Wu, Y., et al. Acoustic assembly of cell spheroids in disposable capillaries. Nanotechnology. 29 (50), 504006 (2018).
  18. Hu, X., et al. On-chip hydrogel arrays individually encapsulating acoustic formed multicellular aggregates for high throughput drug testing. Lab on a Chip. 20 (12), 2228-2236 (2020).
  19. Wu, Z., et al. The acoustofluidic focusing and separation of rare tumor cells using transparent lithium niobate transducers. Lab on a Chip. 19 (23), 3922-3930 (2019).
  20. Chen, B., et al. High-throughput acoustofluidic fabrication of tumor spheroids. Lab on a Chip. 19 (10), 1755-1763 (2019).
  21. Sriphutkiat, Y., Kasetsirikul, S., Zhou, Y. Formation of cell spheroids using Standing Surface Acoustic Wave (SSAW). International Journal of Bioprinting. 4 (1), 130 (2018).
  22. Guex, A. G., Di Marzio, N., Eglin, D., Alini, M., Serra, T. The waves that make the pattern: a review on acoustic manipulation in biomedical research. Materials Today Bio. 10, 100110 (2021).
  23. Harley, W. S., et al. Advances in biofabrication techniques towards functional bioprinted heterogeneous engineered tissues: A comprehensive review. Bioprinting. 23, 00147 (2021).
  24. Yang, Y., Dejous, C., Hallil, H. Trends and applications of surface and bulk acoustic wave devices: a review. Micromachines (Basel). 14 (1), 43 (2022).
  25. Ma, Z., et al. Acoustic holographic cell patterning in a biocompatible hydrogel). Advanced Materials. 32 (4), 1904181 (2020).
  26. Miao, T. K., et al. High-throughput fabrication of cell spheroids with 3D acoustic assembly devices. International Journal of Bioprinting. 9 (4), 733 (2023).
  27. Jeger-Madiot, N., et al. Self-organization and culture of Mesenchymal Stem Cell spheroids in acoustic levitation. Scientific Reports. 11 (1), 8355 (2021).
  28. Cai, H., et al. Acoustofluidic assembly of 3D neurospheroids to model Alzheimer’s disease. Analyst. 145 (19), 6243-6253 (2020).
  29. Mei, J., Zhang, N., Friend, J. Fabrication of surface acoustic wave devices on lithium niobate. Jove-Journal of Visualized Experiments. (160), e61013 (2020).
  30. Niculescu, A. G., Chircov, C., Bîrcă, A. C., Grumezescu, A. M. Fabrication and applications of microfluidic devices: a review. International Journal of Molecular Sciences. 22 (4), 2011 (2011).
check_url/it/66078?article_type=t

Play Video

Citazione di questo articolo
Qian, Y., Wei, X., Chen, K., Xu, M. Three-Dimensional Acoustic Assembly Device for Mass Manufacturing of Cell Spheroids. J. Vis. Exp. (200), e66078, doi:10.3791/66078 (2023).

View Video