Summary

代骨髓衍生的双光子成像使用的小鼠树突状细胞

Published: July 09, 2008
doi:

Summary

次级淋巴器官树突状细胞的抗原呈现启动T细胞介导的​​适应性免疫反应的关键。在这里,我们展示了文化的骨髓衍生的小鼠树突状细胞,活化,双光子成像标签。

Abstract

编制小鼠树突状细胞的几种方法可以在文献中发现。在这里,我们提出了一种文化产生大于85%的表面CD11c树突状细胞的方法,回家后皮下注射和目前的抗原,抗原特异性T细胞(见视频)引流淋巴结。此外,我们使用埃森仪器Incucyte跟踪树突状细​​胞的成熟,其中,在第10天,培养细胞的形态是典型的一个成熟的树突状细胞和细胞<85%,是CD11chigh。抗原的外周淋巴结中的演示,通过双光子成像的研究发现,树突状细胞和T细胞相互作用1,2,有三个不同的阶段。第一阶段由高度能动的抗原特异性T细胞和抗原携带树突状细胞的1,2之间的简短的串行接触。第二阶段是标记抗原特异性T细胞和抗原轴承树突状细胞的1,2之间的长期接触。最后,第三阶段的特点是由树突状细胞的分离,恢复活力,并开始划分1,2的T细胞。这是抗原特异性的,可以通过加载抗原细胞跟踪染料标记的树突状细胞的双光子成像分析的交互类型的一个例子。

Protocol

1)从一个鼠标都股骨骨使用夹层剪刀剪去肌肉和暴露的上方和下方的关节(膝关节和髋关节)的股骨。把握清扫镊子股骨中心和削减的上方和下方的关节离开尽可能完整的骨骺。 尽可能使用小夹层剪刀的肌肉清理干净。转移到一盘的RPMI股骨。 所有的程序应在油烟机,从这个角度上进行,使用无菌媒体,仪器,移液器和培养皿。 2)消毒股骨骨头: </p…

Discussion

树突状细胞是关键介质的适应性免疫反应和最有效的抗原提呈细胞的特点。文献中对人类和小鼠树突状细胞培养的方法不同类型的细胞因子影响树突状细胞对不同类型的发展。值得注意的是,GM – CSF flt3L,IL4,IL13,TNF -α和IFN -γ是用来在不同的组合,产生成熟的,不成熟的,炎症和稳态像小鼠骨骨髓衍生树突状细胞在体外培养 3-7 。在这里,我们提出了一个简单的方法成熟的小鼠树突状细胞有能力生产归?…

Acknowledgements

美国国立卫生Kirchstein奖学金predoctoral奖学金AI – 64128(MPM)的,GM – 41514(MDC)的GM – 48071(IP)

Riferimenti

  1. Miller, M. J., Safrina, O., Parker, I., Cahalan, M. D. Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells in lymph nodes. J Exp Med. 200, 847-856 (2004).
  2. Henrickson, S. E., et al. T cell sensing of antigen dose governs interactive behavior with dendritic cells and sets a threshold for T cell activation. Nat Immunol. 9, 282-291 (2008).
  3. Jefford, M., et al. Functional comparison of DCs generated in vivo with Flt3 ligand or in vitro from blood monocytes: differential regulation of function by specific classes of physiologic stimuli. Blood. 102, 1753-1763 (2003).
  4. Inaba, K., et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med. 176, 1693-1702 (1992).
  5. Lutz, M. B., et al. Differential functions of IL-4 receptor types I and II for dendritic cell maturation and IL-12 production and their dependency on GM-CSF. J Immunol. 169, 3574-3580 (2002).
  6. Xu, Y., Zhan, Y., Lew, A. M., Naik, S. H., Kershaw, M. H. Differential development of murine dendritic cells by GM-CSF versus Flt3 ligand has implications for inflammation and trafficking. J Immunol. 179, 7577-7584 (2007).
  7. Inaba, K., Swiggard, W. J., Steinman, R. M., Romani, N., Schuler, G. Isolation of dendritic cells. Curr Protoc Immunol. 3, (2001).
  8. Winzler, C., et al. Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J Exp Med. 185, 317-328 (1997).
  9. Koch, F., et al. Tumor necrosis factor alpha maintains the viability of murine epidermal Langerhans cells in culture, but in contrast to granulocyte/macrophage colony-stimulating factor, without inducing their functional maturation. J Exp Med. 171, 159-171 (1990).
  10. Miller, M. J., Hejazi, A. S., Wei, S. H., Cahalan, M. D., Parker, I. T cell repertoire scanning is promoted by dynamic dendritic cell behavior and random T cell motility in the lymph node. Proc Natl Acad Sci U S A. 101, 998-1003 (2004).
  11. Wei, S. H., et al. Ca2+ signals in CD4+ T cells during early contacts with antigen-bearing dendritic cells in lymph node. J Immunol. 179, 1586-1594 (2007).
  12. Castellino, F., et al. Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature. 440, 890-895 (2006).

Play Video

Citazione di questo articolo
P. Matheu, M., Sen, D., Cahalan, M. D., Parker, I. Generation of Bone Marrow Derived Murine Dendritic Cells for Use in 2-photon Imaging. J. Vis. Exp. (17), e773, doi:10.3791/773 (2008).

View Video