Rivista
/
/
Creating a Structurally Realistic Finite Element Geometric Model of a Cardiomyocyte to Study the Role of Cellular Architecture in Cardiomyocyte Systems Biology
JoVE Journal
Bioingegneria
È necessario avere un abbonamento a JoVE per visualizzare questo.  Accedi o inizia la tua prova gratuita.
JoVE Journal Bioingegneria
Creating a Structurally Realistic Finite Element Geometric Model of a Cardiomyocyte to Study the Role of Cellular Architecture in Cardiomyocyte Systems Biology
DOI:

08:54 min

April 18, 2018

, , , , , , ,

Capitoli

  • 00:04Titolo
  • 01:19Segment Myofibrils and Mitochondria Regions from the EM 3D Image Dataset
  • 03:05Create a Finite Element Mesh from the Segmented Components
  • 04:36Mathematically Map the Spatially Varying Density of Ion-channels of Interest onto the Finite Element Mesh
  • 06:51Results: A Structurally Realistic Finite Element Geometric Model of a Cardiomyocyte
  • 08:13Conclusion

Summary

Traduzione automatica

This protocol outlines a novel method to create a spatially detailed finite element model of the intracellular architecture of cardiomyocytes from electron microscopy and confocal microscopy images. The power of this spatially detailed model is demonstrated using case studies in calcium signaling and bioenergetics.

Video correlati

Read Article