L]
lee Journal of Visualized Experiments www.jove.com

Video Article
Dynamic Inter-subject Functional Connectivity Reveals Moment-to-Moment

Brain Network Configurations Driven by Continuous or Communication
Paradigms

Thomas A.W. Bolton1'2, Delphine Jochaut3, Anne-Lise Girauda, Dimitri Van De Ville"?

1Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL)
2Department of Radiology and Medical Informatics, University of Geneva
3Department of Neuroscience, University of Geneva

Correspondence to: Thomas A.W. Bolton at thomas.bolton@epfl.ch

URL: https://www.jove.com/video/59083
DOI: doi:10.3791/59083

Keywords: Neuroscience, Issue 145, Functional magnetic resonance imaging, task-based analysis, dynamic functional connectivity, inter-subject
functional correlation, sliding-window analysis, thresholding, movie-watching paradigm

Date Published: 3/21/2019

Citation: Bolton, T.A., Jochaut, D., Giraud, A.L., Van De Ville, D. Dynamic Inter-subject Functional Connectivity Reveals Moment-to-Moment Brain
Network Configurations Driven by Continuous or Communication Paradigms. J. Vis. Exp. (145), €59083, doi:10.3791/59083 (2019).

Task-based functional magnetic resonance imaging bears great potential to understand how our brain reacts to various types of stimulation;
however, this is often achieved without considering the dynamic facet of functional processing, and analytical outputs typically account for
merged influences of task-driven effects and underlying spontaneous fluctuations of brain activity. Here, we introduce a novel methodological
pipeline that can go beyond these limitations: the use of a sliding-window analytical scheme permits tracking of functional changes over
time, and through cross-subject correlational measurements, the approach can isolate purely stimulus-related effects. Thanks to a rigorous
thresholding process, significant changes in inter-subject functional correlation can be extracted and analyzed.

On a set of healthy subjects who underwent naturalistic audio-visual stimulation, we demonstrate the usefulness of the approach by tying the
unraveled functional reconfigurations to particular cues of the movie. We show how, through our method, one can capture either a temporal
profile of brain activity (the evolution of a given connection), or focus on a spatial snapshot at a key time point. We provide a publicly available
version of the whole pipeline, and describe its use and the influence of its key parameters step by step.

Video Link

The video component of this article can be found at https://www.jove.com/video/59083/

Introduction

Functional magnetic resonance imaging (fMRI) has become the tool of choice to non-invasively monitor the changes in brain activity resulting
from external stimulation. More specifically, vivid interest has emerged about the understanding of statistical interdependence between regional
activation time courses, known as functional connectivity (FC) and typically computed as Pearson s correlation coefficient. Functional interplays
across the brain have been extensively shown to reconfigure as a function of the underlying task?®

Two analytical directions have separately been followed to go beyond this introductory characterization: on the one hand, the response induced
in a given brain region by a time-locked stimulus was observed to strongly correlate across distinct subJects5 Quantifying this inter-subject
correlation (ISC) showed potential to refine our understanding of cognmon and brain disorders'° . Further, this cross-subject correlational
approach was also extended to the assessment of cross-regional synchromcrty in what became known as the inter-subject functional
correlation (ISFC) approach1

On the other hand, the dynamic flavor of FC reconf|gurat|ons started to receive increased attention (see Hutchison et al.’ 4 Preti, Bolton and Van
De Ville' , Gonzales-Castillo and Bandettini'® for recent reviews on the resting-state and task-based sides of this questlon) In particular, whole-
brain FC changes over time can be tracked through consecutlve correlation measurements over a gradually shifted temporal sub-window'’
revealing additional insight in the context of behavioral tasks'®

Here, we present a methodological framework that combines those two avenues. Indeed, we compute ISFC in sliding-window fashion to track
the evolution of cross-regional synchronicity between the subjects exposed to a time-locked, naturalistic paradigm. Through the cross-subject
aspect of the method, analyses are focused on stimulus-driven effects, while spontaneous fMRI changes (which are uncorrelated across
subjects) are strongly damped. ThIS |s |mportant because resting-state and task-evoked activity patterns are increasingly understood to be
characterized by distinct propertles

Copyright © 2019 Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported March 2019 | 145 | e59083 | Page 1 of 11
License


https://www.jove.com
https://www.jove.com
https://www.jove.com
mailto:thomas.bolton@epfl.ch
https://www.jove.com/video/59083
http://dx.doi.org/10.3791/59083
https://www.jove.com/video/59083/

L]
lee Journal of Visualized Experiments www.jove.com

As for the dynamic component of the method, it enables a more complete and accurate characterization of task stimuli, particularly when probing
a naturalistic paradigm in which a diverse set of cues (auditory, visual, social, etc.) are combined over time. Further, as the sound statistical
evaluation of significant dynamic fluctuations has been hotly debated®®*?*, our approach takes particular care of this aspect of the analyses by
isolating significant ISFC changes through comparison to appropriate null data.

We illustrate the method on a set of healthy subjects exposed to an audio-visual movie stimulus, for whom we show that the temporal and spatial
ISFC change profiles arising from localized movie sub-intervals can be accurately extracted. In doing so, we also describe the influence of the
main analytical parameters to be selected by the user. The presented findings are based on part of formerly published data®%,

The following protocol has been approved by the local ethics committee (Biomedical Inserm 365 protocol C08-39).
1. Pre-imaging

1. Enroll a study population of subjects, obtaining written, informed consent for all of them. Seek approval from the local ethics committee.
Select a paradigm to investigate that can be applied to all subjects in time-locked manner.
NOTE: Here, we used an audio-visual scientific documentary for youngsters (https://miplab.epfl.ch/index.php/miplife/research/supplement-
asd-study).

2. Imaging

1. For each subject to consider in the analyses, perform at least one functional imaging session in which the scanned volunteer is
subjected to the time-locked paradigm of interest.

1. Use a 3 Tesla MRI scanner to acquire transverse slices through an echoplanar imaging sequence.

2. Employ the following imaging parameters: voxel size = 3 mm x 3 mm x 3 mm, repetition time (TR) = 2 s, echo time = 50 ms, field of
view = 192, 40 slices.
NOTE: Faster TR values are encouraged within the scope of feasibility. The protocol can also be applied with a more restricted field of
view (e.g., for analyses restricted to a specific brain sub-structure), which would enable either a better temporal resolution (lower TR),
or a spatially more precise analysis.

3. Leave a few seconds of recording (= 2 TR) before and after the presentation of the stimulus.

2. Perform at least one separate functional imaging session in which the scanned volunteer lies at rest in the scanner, eyes closed and
instructed not to fall asleep.
NOTE: Separate stimulus-related and resting-state acquisitions prevent otherwise possible interplays between the conditions (e.g., having
watched the movie beforehand may leave a lasting trace to a subsequently acquired resting-state recording)27. If it is not desired to go
through the aforementioned additional resting-state acquisition, an alternative (albeit more prone to the detection of false positives; see
Discussion) computational option in the pipeline replaces this data by surrogate time courses computed from the paradigm-related signals
(see step 5.1.2).
3. Perform structural imaging.
1. Use a 3 Tesla MRI scanner and a T1-weighted magnetization-prepared rapid acquisition gradient echo sequence.
2. Employ the following imaging parameters: voxel size =1 mm x 1 mm x 1 mm, field of view = 256, 176 slices.

3. Data and Software Preparation

1. For each session to analyze, ensure the existence of the following data files:
1. A set of functional MRI volumes, present as separate 3D NIFTI or HDR/IMG files, with a consistent numbering scheme (e.g.,
"fMRI_0001", "fMRI_0002", etc.).
2. A T1 structural MRI image, in NIFTI or HDR/IMG format.
3. An atlas of interest in Montreal Neurological Institute (MNI) space, in NIFTI format.
NOTE: An example of required input files is provided for a representative subject ("S17"), along with the full pipeline code, at https://
cdscience.ch/source/lntersubj_pipeline.git

2. Download the latest version of the publically available Freesurfer software®® (https://surfer.nmr.mgh.harvard.edu/fswiki/
DownloadAndinstall).

3. Download the latest version of the publically available Statistical Parametric Mapping (SPM) MATLAB toolbox from https://
www.fil.ion.ucl.ac.uk/spm/software/spm12/.

4. Open MATLAB (version 2017a or more recent) and locate the newly downloaded "freesurfer" and "spm12" folders. For each, right click on it
and select the Add to Path > Selected Folders and Subfolders option.

4. Data Preprocessing

1. In the MATLAB terminal, type spm to launch the SPM12 main menu, and click on the fMRI button to access the preprocessing
options devoted to fMRI data. Perform the following steps separately for each fMRI session to preprocess.
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Click on Realign (Est & Res), and in the newly open Batch Editor window, double click on Data > Session. In the newly open Session
window, select all functional images to process. Then, click on the Done button, and afterwards, on the Run Batch icon from the Batch
Editor window (green triangle). Wait until the realignment step finishes, as indicated in the MATLAB terminal window.

Click on Coregister (Est & Res), and in the newly open Batch Editor window, double click on Reference image. In the newly open
Reference Image window, select the average functional volume created in the following step, prefixed with "mean", and click on the
Done button. Then, double click on Source image, and in the newly open Source Image window, select the T1 image. Click on the
Done button, and afterwards, on the Run Batch icon from the Batch Editor window (green triangle). Wait until the coregistration step
finishes, as indicated in the MATLAB terminal window.

NOTE: The T1 image is overwritten at this step, so that the updated one lies in the same space as the functional volumes.

Click on Segment, and in the newly open Batch Editor window, double click on Volumes. In the newly open Volumes window, select
the T1 image, and click on the Done button. Then, in the Batch Editor window, double click on Deformation Fields and select the
Inverse option. Click on the Run Batch icon (green triangle), and wait until the segmentation step finishes, as indicated in the MATLAB
terminal window.

2. Type JOVE_GUI1 in the MATLAB terminal to open the first preprocessing graphical user interface window. Perform the following
steps for each fMRI session to analyze.

1.

Click on Enter fMRI data, and select all realigned functional volumes created in step 4.1.1 (prefixed with "r"). For IMG/HDR files, select
both the IMG and HDR volumes.

2. Enter the TR of the data (in seconds) in the dedicated editable text window.
3. Click on Enter T1 data and select the three probabilistic tissue type volumes created in step 4.1.3 (prefixed with "c1", "c2" and "c3").
4. Click on Enter motion file, and select the text file containing motion parameters from the session of interest, created in step 4.1.1 and
prefixed with "rp".
5. Select the desired type of preprocessing, that is, whether the data should be detrended or not (respectively setting the dedicated radio
button on or off), and what covariates should be regressed out (by selecting the appropriate option from the dedicated list).
NOTE: The regression step is inspired from a function originating from the DPARSF toolbox?®. The white matter and cerebrospinal
fluid signals from individual subjects are averaged over the voxels for which the respective template DPARSF probabilistic tissue map
showed a signal larger than 0.99. In our analyses, we detrended the data, and regressed out white matter/cerebrospinal fluid time
courses as well as constant, linear and quadratic trends.
6. To preprocess the data, click on Preprocess, and wait for the display to appear in the window. The data can be re-preprocessed
differently by modifying the options, and clicking again on the Preprocess button.
NOTE: The gray matter plot is inspired from the representation suggested by Power et al.>.
7. To save the output for following steps, click on the Save button. To clear the content of the window, click on the Clear button.
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Supplementary Figure 1: Example screenshot from the first preprocessing graphical user interface window. Voxel-wise time courses of
gray matter voxels following the selected preprocessing options (top right plot), and covariates that may be used in the preprocessing (from top
to bottom: cerebrospinal fluid/white matter average time courses, translational motion parameters, and rotational motion parameters. Please click
here to view a larger version of this figure.

3. Type JOVE_GUI2 in the MATLAB terminal to open the second preprocessing graphical user interface window. Perform the following
steps for each fMRI session to analyze.

1.

Click on Select data, and select the data file saved in step 4.2.7 (named "ISFC_VX.mat").

2. Click on Select motion, and select the text file containing motion parameters from the session of interest, created in step 4.1.1 and

prefixed with "rp".

3. Click on Select atlas, and select the NIFTI file representing the atlas to use for parcellation.
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4. Click on Select inverse warp, and select the NIFTI file representing the deformation field from MNI to native space, created in step
4.1.3 and prefixed with "iy".

5. Click on Select fMRI volume, and select any of the fMRI data volumes.

NOTE: This step enables to access the header information of the functional data, hence why the actual chosen volume is not
important.

6. Enter the TR of the data (in seconds) in the dedicated editable text window.

7. Enter scrubbing-related information: the type of scrubbing to perform (i.e., how many frames to scrub out before and after the tagged
ones) in the "Scrubbing type" list, and the framewise displacement threshold value (Power's criterion31) above which an fMRI volume
should be scrubbed in the "Scrubbing threshold" editable text window (in mm).

NOTE: Cubic spline interpolation is performed on the scrubbed data points to replace them with estimated values from neighboring
samples. In our analyses, we scrubbed one frame after the tagged volumes, and used a 0.5 mm threshold for scrubbing.

8. Enter the size of the sliding-window W to use for ISFC computations (see step 5), in TRs.

NOTE: This piece of information will enable filtering of the time courses through a function originating from the DPARSF toolbox?®, at f
= 1/W Hz*2. In our analyses, we used W = 10 TR as a trade-off value to capture dynamic fluctuations while conserving enough samples
for robust estimations.

9. Click on the Plot button to display indicative atlased time courses before (top plot) and after (bottom plot) the scrubbing and filtering
steps. Verify, by visual inspection, that following the selected preprocessing steps, those output signals do not incorporate salient
artifactual components.

10. To save the outputs for following steps, enter a save name in the dedicated editable text window, and click on the Save button. To clear
the content of the window, click on the Clear button.
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Supplementary_Figure 2: Example screenshot from the second preprocessing Eraphical user interface window. Regional time courses
following atlasing, before (top plot) and after (bottom plot) scrubbing and filtering according to selected parameters. Each curve depicts one
regional time course randomly selected amongst all the available ones. Please click here to view a larger version of this figure.

5. Sliding-window ISFC Computations

1. Type JOVE_GUI3 in the MATLAB terminal to open the first ISFC-related graphical user interface window. Perform the following
steps separately for each type of acquired fMRI session segment (stimulus-related segments, resting-state segments of stimulus-
related sessions, and purely resting-state segments).

1. Click on Load data, and select all the appropriate data files created through step 4.3.

2. Select whether the selected session segments should undergo phase randomization.

NOTE: Phase randomization can be used as an alternative option for the generation of null data from stimulus-related signals, if no
resting-state recordings are available.

3. Enter the TR of the data (in seconds) in the dedicated editable text window.

4. Enter sliding-window parameters to use for the analysis in the dedicated editable text windows: window size (in TRs) over which
connectivity measurements should be computed, and step size (in TRs) by which successive windows should be shifted.

NOTE: In our analyses, we used a window size of 10 TR and a step size of 1 TR.

5. Modify the "Session types" table to specify which of the loaded session segments were acquired upon the same experimental
condition. Use increasing integer numbers from 1 onwards to tag different types of segments (e.g., if the stimulus was displayed for the
first or for the second time in a given recording). Leave the table untouched if only one type of session segment was acquired.

NOTE: A session in the present work may refer either to a combined movie/resting-state recording (termed RUN4 and RUN, in Figure
1A), or to a purely resting-state recording (RUN3). A session segment refers to a sub-portion of a session recording, either when the
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movie was watched, or when the subjects lied at rest. The above information is used in the subsequently described ISFC computations
(see step 5.1.8) to limit the confounding influence of different session segment types.

Enter bootstrapping-related parameters in the dedicated editable text windows: the number of bootstrapping folds over which to
perform ISFC computations, and the number of subjects that should constitute the reference group for each fold of ISFC computations.
NOTE: In our analyses, we used 250 bootstrapping folds, and 6 subjects into the reference group.

Enter specifications about which sub-portion of time courses should be analyzed in the Timing parameters section, in the dedicated
editable text windows. A start index and an end index (in TRs) should be provided. To analyze the whole recording duration, use 1 as
start index and the number of samples as end index.

Click on the Plot button to perform ISFC computations. Displays are gradually updated over time, along with the amount of elapsed
bootstrapping folds. For a region pair (i,j) and a sliding window index 1, ISFC is computed as the average of cross-correlations between
session segment s and all session segments from the reference group, within a sliding-window of length W; denote this reference
group by W, its number of subjects by Ny, and let x,[s](t) the time course of region i for session segment s at time t; an ISFC estimate is
then given by:

Yrewp (Nt + W), xM(t: ¢ + w)
ISFCE (1) = == — .
v

ISFC measurements are computed over the specified amount of bootstrapping folds, and with the selected number of session
segments used as a reference group at each fold (see step 5.1.6). If several session segment subtypes are included, a mixture of
subtype samples always composes the reference group. The final output for each session segment is the average ISFC across all folds
in which it was not included as a reference measurement.

NOTE: The reference group is the set of session segments to which the functional time courses of session segment s are compared at
each fold of the bootstrapping process. For the results to be more robust to outlier data points, ISFC is computed multiple times on a
different reference group (that is, a different subset of session segments). Importantly, the acquisition time t does not match the sliding
window index T, as the latter is computed over a set of W data points, and relies on the window step size for successive estimates. The
bootstrapping process was inspired from a former study by Byrge et al.

To save the outputs for following steps, enter a save name in the dedicated editable text window, and click on the Save button. To clear
the content of the window, click on the Clear button.
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Supplementary Figure 3: Example screenshot from the first ISFC-related graphical user interface window. (Top plot) Schematic
representation of how often each considered session has its ISFC measurements computed (i.e., is not selected within the reference group).
(Bottom plot) On an indicative subject, ISFC time courses computed for fifty example connections, selected as the ones exhibiting the largest
summed absolute ISFC values across time. Please click here to view a larger version of this figure.

2. Type JOVE_GUI4 in the MATLAB terminal to open the second ISFC-related graphical user interface window.

Click on Load ISFC data and select the stimulus-related ISFC output file(s) created in step 5.1.

2. Click on Load null data and select, depending on the used null data generation scheme, either the resting-state ISFC, or the phase
randomized stimulus-related ISFC output file(s) created in step 5.1.
3. Click on Load codebook and select the codebook file created in step 4.3.
4. Enter the TR of the data (in seconds) in the dedicated editable text window.
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5. Enter the sliding-window parameters used in the computations of step 5.1 (window size and step size, in TRs) in the dedicated editable
text windows.

6. Enter (in percent) the a-value at which the ISFC time courses should be thresholded to highlight significant changes in the dedicated
editable text window.
NOTE: Here and elsewhere, when referrin% to an a-value of 2.5%, it means that significance is achieved when a value is lower than
the 2.5 percentile, or larger than the 97.5" percentile, of the null data. In our analyses, we had 5,762 resting-state data points to our
disposal, and selected an a-value of 10™. This means that we wanted 0.01% of data samples to be larger or equal to the selected
thresholds past which an ISFC excursion would be deemed significant. For comparison purposes, the a-level demanded by Bonferroni
correction would be 0.05/44,551 = 1.12 x 10°®, and the most stringent possible a-level enabled with our amount of data (n samples)

would be —— = 8.68 x 10°S.
2n+2

7. Click on the Plot button to perform the ISFC thresholding process, in which all available null ISFC measurements are aggregated, for a
given connection, to construct a null distribution, following which stimulus-related ISFC measurements are thresholded according to the
selected a-value. Time points at which a stimulus-related ISFC value statistically significantly exceeds the null distribution are tagged
as -1/+1 for significant ISFC decreases and increases, respectively.

NOTE: The thresholding process draws inspiration from the resting-state dynamic FC work of Betzel et al®,

8. To visualize the ISFC spatial patterns at different time points, drag the slider below the ISFC excursion plot.

e S T

Load ISFC data
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Select save rame. .

SAVE
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Supplementary Figure 4: Example screenshot from the second ISFC-related graphical user interface window. (Top left plot) On an
indicative subject, ISFC time courses computed for three example connections, selected as the ones exhibiting the largest amount of significant
ISFC excursions and displayed with their associated computed significance thresholds (horizontal lines). (Bottom left plot) For the same
connections, associated excursion time courses averaged across subjects, with two-tailed 95% confidence intervals displayed as error measure.
(Right plot) Spatial ISFC pattern (averaged ISFC excursions across subjects) for a selected time point indicated by a vertical black line on the
ISFC and excursion plots. Positive ISFC excursions are shown in yellow, and negative ones in pink. The size and color code of the nodes are
proportional to their degree. Please click here to view a larger version of this figure.

Representative Results

Here, we considered n = 15 typically developing (TD) subjects for whom we obtained written, informed consent. All were right-handed males
(23.42 £ 7.8 years old). The chosen paradigm was an audio-visual scientific documentary for youngsters about the dangers of sun exposure.
It contains a large array of visual, auditory and social stimuli, and can be watched at https://miplab.epfl.ch/index.php/miplife/research/
supplement-asd-study.

We acquired two sessions per subject (RUN4 and RUN,) in which the assessed movie was displayed from 5 to 353 s (5.8 min duration). A
resting-state segment also followed from 386 to 678 s (4.9 min duration). In addition, one solely resting-state session (RUN3) was acquired for
each subject (excluding one who suffered from claustrophobia), lasting for 310 s (5.2 min). Example movie scenes and the timing of acquired
data are summarized in Figure 1A. Importantly, the acquisition protocol was not optimal in the sense that resting-state recordings acquired just
after movie exposure may be partly corrupted by spillover effects”; we make use of this data in the present findings to have a satisfying amount
of samples for statistical thresholding, but this should be avoided whenever possible.

We excluded all sessions for which more than 10% of frames were scrubbed, at a threshold of 0.5 mm, and considered the parcellation from
Craddock et al.** (two-level temporal correlation algorithm) to generate regional time courses, for a total of 299 different brain regions.

ISFC was computed separately on (1) the movie-watching subparts of RUN1 and RUN,, (2) the resting-state subparts of RUN; and RUN,, and
(3) the resting-state RUN3 recordings. We used a window length W = 10 TR for the main presented results, and compare them to a lower value
of W =5 TR. Step size always remained equal to 1 TR. Bootstrapping was performed over 250 folds, including 6 session segments in each
reference group.
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Figure 1B displays ISFC time courses generated at W = 10 TR and W = 5 TR for three different representative connections: connection 1
involved a left inferior parietal region related to the expectation of moving objects (MNI coordinates: 41 ,9,32)35, and a right frontal opercular area
linked to response inhibition (-34,-52,45)36. This latter region was also implicated in connections 2 and 3, respectively with an area implicated in
sensory coordination (54,6,34)37, and one tied to the processing of the meaning of words (6,62,9)38.

A comparison across window lengths reveals that in the W = 5 TR setting, temporal variance in the subjects is overall Iar%er in both the movie-
watching and resting-state segment cases as compared to W = 10 TR, a known phenomenon in sliding-window analyses °. For connection

1, regardless of the window length, a localized subpart of the movie-watching recording (at around 55 s) shows a strong, synchronized ISFC
increase across subjects, which largely exceeds the range of values taken in the resting-state case. Thus, we expect to capture this temporal
subpart as a significant ISFC transient with our thresholding method.

For connection 2, we observe similar temporal dynamics, but for W = 5 TR, the increase becomes less easy to disentangle as compared to the
resting-state time courses, due to the larger sliding-window methodology-related noise. As for connection 3, it reflects a case in which there is no
clear response to the movie, and thus, the fluctuations from movie-watching and resting-state time courses are similar. The expected outcome at
this analytical stage is a mix between connections that show clear stimulus-induced reconfigurations, and connections that do not respond.
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Figure 1: Acquisition timing and example ISFC time courses. (A) The movie watched by the subjects involved a wide array of social
situations (example images 1 and 4), scientific explanations with colorful panels (example images 2 and 5), and landscape sceneries (example
image 3). Three sessions were acquired per subject: two (RUN4 and RUN,) included the movie stimulation (from 5 to 353 s, highlighted in
green) followed by a resting-state period (from 386 to 678 s, shown in yellow), while one (RUNj3) solely consisted in a resting-state recording
(310 s duration, displayed in orange). (B) For three indicative connections (C1, C2 and C3, respectively dark green/red, light green/orange and
turquoise/yellow traces), evolution of ISFC over time during movie-watching (cold colors) or resting-state (hot colors). For W = 10 TR (left panel),
movie-watching ISFC changes more largely stand out as compared to W = 5 TR (right panel). Each trace reflects the ISFC time course of one
session. This figure has partly been modified from Bolton et al.%®. Please click here to view a larger version of this figure.

Figure 2A displays the results following statistical thresholding of ISFC time courses, for the same three connections as above. A time course
value of 1 means that all subjects underwent the same ISFC increase at the same time point; a value of 0 means that no subject underwent a

significant ISFC change; a value of -1 represents a synchronous ISFC decrease across all subjects. As before, we contrast W =5 TR and W =
10 TR, and we also highlight two a-value cases: a = 0.01%, and a = 5%.

Fitting with the above observations, a lower window length reduces the amount of extracted significant ISFC changes. For connection 1, both W
=5TR and W = 10 TR, however, extract the same particular moment (t = 55 s) as showing a strong ISFC increase. Taking a hemodynamic delay
of roughly 5 s into account, this corresponds to a subpart of the movie when colored lines were extending towards a doll, and abruptly stopped
just in front of it (46-49 s), fitting with the role of the involved regions in moving object expectation and response inhibition®>2¢.

When increasing a from 0.01% to 5%, one can observe a much lower specificity of the detected ISFC transients, likely including many false
positives and expectedly showing much less temporal synchrony.

As another perspective that can be set on the data, Figure 2B shows the whole-brain spatial maps of significant ISFC changes at t = 55 s. It can
be seen that the response to the movie scene extends far beyond the example connections described here.
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Figure 2: Temporal and spatial snapshots of ISFC patterns. (A) ISFC transient time courses, averaged across subjects, for three indicative
connections (C1, C2 and C3, respectively dark green, light green and turquoise traces). The movie scene that drove the ISFC changes is
highlighted in light grey, and depicted by example images. For W = 10 TR (left column of plots), ISFC changes are more strongly detected than
for W = 5 TR (right column of plots). For a = 0.01% (top row of plots), specificity to localized movie cues is larger than for a = 5% (bottom row
of plots). Each trace reflects the ISFC transient time course of one session, and the two-tailed 95% confidence intervals are displayed as error
measure. (B) For W = 10 TR and a = 0.01%, there is a neat, restricted spatial pattern of ISFC transients at t = 55 s (the peak ISFC transient
value for C1); for W = 5 TR and a = 5%, connections undergoing a significant ISFC change at this time are much more numerous. Note that we
assume a hemodynamic delay of around 5 s in the described temporality (i.e., a value of 55 s here relates to the movie stimulus at 50 s). This
figure has partly been modified from Bolton et al.?®. Please click here to view a larger version of this figure.

On a dataset of healthy subjects, we demonstrated how synchronous cross-subject increases and decreases in FC, the ISFC transients, would
match temporally localized movie cues, providing information that goes beyond a static description. Although the use of cross-subject correlation
measures enables to focus the analysis on stimulus-driven functional reconfigurations, one must also be aware that it limits the findings to

the effects that are shared across the studied population: hence, low-level sensory processing is expected to be over-represented compared

to frontal processing4°. To bypass this limitation, new methods that also have the ability to extract the regions that most strongly vary across
subjects are being developed™ .

Another limitation from the introduced methodology arises from the sliding-window aspect, as temporal resolution of ISFC transient time courses
is lowered compared to frame-wise approaches1 . As we showed, a trade-off is needed between a sufficiently low window length to properly
resolve dynamic ISFC reconfigurations, and a large enough size to obtain robust estimates. Two critical steps in our framework ensure that the
extracted ISFC transients reflect truly occurring changes in connectivity: first, the high-pass filtering of regional time courses with the inverse

of the window Iength32; second, the use of resting-state ISFC data for the generation of a relevant null distribution, with identical acquisition
parameters as compared to the stimulus-related data. Of course, the latter also requires a lengthier global acquisition time, so that resting-state
data can be gathered on top of stimulus-related sessions. As an alternative approach to avoid the additional resting-state recordings, we also
offer the possibility to generate phase randomized data directly from the stimulus-related time courses, an approach often used in dynamic
functional connectivity analyse323'24. Further evaluation on a subset of sessions revealed that although the resting-state null method is more
conservative, and thus less prone to false positives, the global patterns of ISFC excursion detection were similar across both schemes (see
Supplementary Figure 5).
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Supplementary Figure 5: Detection of ISFC excursions across nuII data generation methods. For resting-state (left column, blue plots) or
phase randomization (right column, red plots) null data generation methods, percentage of ISFC excursions extracted across connections. The
bottom plots are an inset on the connections emanating from the first three considered brain regions. Error represents standard deviation across

subjects. Please click here to view a larger version of this figure.

The duration of the resting-state acquisitions actually relates to a critical parameter of the analyses: the a-value. As exemplified above, a too
lenient choice will lead to a large amount of false positives in the detected ISFC transients. The larger the amount of available resting-state data,
the more stringent the achievable false positive rate, because thresholding can be based on more extreme values from the null distribution. As
an indication, for n = 299 atlas regions as here and given our tally of 5,762 resting-state data points, we could at best achieve an a-value close to
0.01% (see step 5.2.6 for mathematical details).

Another key point pertaining to any fMRI analysis lies in the rigorous removal of possible motion-related artifacts from the analyzed data®**%,

In particular, if one wishes to apply the introduced pipeline to diseased populations exhibiting marked motion in the scanner, we recommend

that on top of mcludmg motion variables as covariates in the performed statistical analyses, additional preprocessing steps be run, such as
wavelet denmsmg or ICA-AROMA*, Group comparison, for instance to compare ISFC transients between a healthy and a diseased group, can
readily be performed by running the described approach in parallel on both groups of interest (see Bolton et al.®®for an example on a population
diagnosed with autism spectrum disorders). However, a difference between the groups can then arise in two distinct settings: (1) an absent ISFC
change in one group, or (2) a more heterogeneous evolution in that group. To disentangle those two factors, the pipeline should be run once
more for the diseased group, using the healthy subject set as the reference group at the bootstrapping step. The former case would still result in
an absent response, whereas the latter would not.

On top of what we described here, the introduced methodology also opens up promising future avenues: from an analytical side, ISFC transient
maps could be viewed as brain graphs from which metrics quantifying brain connectivity could be derived*®® o dynamlc ISFC states could be
extracted through clustering approaches and assessed in terms of their spatial and temporal characterlst|cs 748 In addition, one could also
envisage the use of more sophisticated connectivity measurement tools than Pearson's correlation coefficient to reveal subtler sides of FC

From the experimental side, the application of our pipeline to a more extended set of paradlgms is a promising perspective: for example, instead
of a movie as studied here, one could enwsage to use a piece of music*® or a narrative storg/ 1350 45 a time-locked stimulus. Alternatively, it could
even be envisioned, through hyperscannlng to probe naturalistic social communication®
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