
Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com March 2021 • 169 • e61906 • Page 1 of 17

Deep Neural Networks for Image-Based Dietary
Assessment
Simon Mezgec1, Barbara Koroušić Seljak2

1 Jožef Stefan International Postgraduate School 2 Computer Systems Department, Jožef Stefan Institute

Corresponding Author

Simon Mezgec

simon.mezgec@gmail.com

Citation

Mezgec, S., Koroušić Seljak, B. Deep

Neural Networks for Image-Based

Dietary Assessment. J. Vis. Exp. (169),

e61906, doi:10.3791/61906 (2021).

Date Published

March 13, 2021

DOI

10.3791/61906

URL

jove.com/video/61906

Abstract

Due to the issues and costs associated with manual dietary assessment approaches,

automated solutions are required to ease and speed up the work and increase its

quality. Today, automated solutions are able to record a person's dietary intake in a

much simpler way, such as by taking an image with a smartphone camera. In this

article, we will focus on such image-based approaches to dietary assessment. For the

food image recognition problem, deep neural networks have achieved the state of the

art in recent years, and we present our work in this field. In particular, we first describe

the method for food and beverage image recognition using a deep neural network

architecture, called NutriNet. This method, like most research done in the early days

of deep learning-based food image recognition, is limited to one output per image,

and therefore unsuitable for images with multiple food or beverage items. That is why

approaches that perform food image segmentation are considerably more robust, as

they are able to identify any number of food or beverage items in the image. We

therefore also present two methods for food image segmentation - one is based on fully

convolutional networks (FCNs), and the other on deep residual networks (ResNet).

Introduction

Dietary assessment is a crucial step in determining

actionable areas of an individual's diet. However, performing

dietary assessment using traditionally manual approaches

is associated with considerable costs. These approaches

are also prone to errors as they often rely on self-reporting

by the individual. Automated dietary assessment addresses

these issues by providing a simpler way to quantify and

qualify food intake. Such an approach can also alleviate

some of the errors present in manual approaches, such as

missed meals, inability to accurately assess food volume,

etc. Therefore, there are clear benefits to automating dietary

assessment by developing solutions that identify different

foods and beverages and quantify food intake1 . These

solutions can also be used to enable an estimation of

nutritional values of food and beverage items (henceforth

'food items'). Consequently, automated dietary assessment

is useful for multiple applications - from strictly medical uses,

such as allowing dietitians to more easily and accurately track

https://www.jove.com
https://www.jove.com/
https://www.jove.com/author/Simon_Mezgec
https://www.jove.com/author/Barbara_Korou%C5%A1i%C4%87%20Seljak
http://dx.doi.org/10.3791/61906
https://www.jove.com/video/61906

Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com March 2021 • 169 • e61906 • Page 2 of 17

and analyze their patients' diets, to the usage inside well-

being apps targeted at the general population.

Automatically recognizing food items from images is a

challenging computer vision problem. This is due to foods

being typically deformable objects, and due to the fact that

a large amount of the food item's visual information can

be lost during its preparation. Additionally, different foods

can appear to be very similar to each other, and the same

food can appear to be substantially different on multiple

images2 . Furthermore, the recognition accuracy depends on

many more factors, such as image quality, whether the food

item is obstructed by another item, distance from which the

image was taken, etc. Recognizing beverage items presents

its own set of challenges, the main one being the limited

amount of visual information that is available in an image. This

information could be the beverage color, beverage container

color and structure, and, under optimal image conditions, the

beverage density2 .

To successfully recognize food items from images, it is

necessary to learn features of each food and beverage

class. This was traditionally done using manually-defined

feature extractors3,4 ,5 ,6 that perform recognition based

on specific item features like color, texture, size, etc.,

or a combination of these features. Examples of these

feature extractors include multiple kernel learning4 , pairwise

local features5 and the bag-of-features model6 . Due to

the complexity of food images, these approaches mostly

achieved a low classification accuracy - between 10% and

40%3,4 ,5 . The reason for this is that the manual approach

is not robust enough to be sufficiently accurate. Because

a food item can vary significantly in appearance, it is not

feasible to encompass all these variances manually. Higher

classification accuracy can be achieved with manually-

defined feature extractors when either the number of

food classes is reduced5 , or different image features are

combined6 , thus indicating that there is a need for more

complex solutions to this problem.

This is why deep learning proved to be so effective for

the food image recognition problem. Deep learning, or deep

neural networks, was inspired by biological brains, and allows

computational models composed of multiple processing

layers to automatically learn features through training on a

set of input images7,8 . Because of this, deep learning has

substantially improved the state of the art in a variety of

research fields7 , with computer vision, and subsequently food

image recognition, being one of them2 .

In particular, deep convolutional neural networks (DCNNs)

are most popular for food image recognition - these networks

are inspired by the visual system of animals, where individual

neurons try to gain an understanding of the visual input

by reacting to overlapping regions in the visual field9 . A

convolutional neural network takes the input image and

performs a series of operations in each of the network

layers, the most common of which are convolutional, fully-

connected and pooling layers. Convolutional layers contain

learnable filters that respond to certain features in the input

data, whereas fully-connected layers compose output data

from other layers to gain higher-level knowledge from it. The

goal of pooling layers is to down-sample the input data2 .

There are two approaches to using deep learning models

that proved popular: taking an existing deep neural network

definition10,11 , referred to as a deep learning architecture in

this article, or defining a new deep learning architecture12,13 ,

and training either one of these on a food image dataset.

There are strengths and weaknesses to both approaches

- when using an existing deep learning architecture, an

https://www.jove.com
https://www.jove.com/

Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com March 2021 • 169 • e61906 • Page 3 of 17

architecture that performed well for other problems can

be chosen and fine-tuned for the desired problem, thus

saving time and ensuring that a validated architecture has

been chosen. Defining a new deep learning architecture,

on the other hand, is more time-intensive, but allows the

development of architectures that are specifically made to

take into account the specifics of a problem and thus

theoretically perform better for that problem.

In this article, we present both approaches. For the food

image recognition problem, we developed a novel DCNN

architecture called NutriNet2 , which is a modification of

the well-known AlexNet architecture14 . There are two

main differences compared to AlexNet: NutriNet accepts

512x512-pixel images as input (as opposed to 256x256-

pixel images for AlexNet), and NutriNet has an additional

convolutional layer at the beginning of the neural network.

These two changes were introduced in order to extract as

much information from the recognition dataset images as

possible. Having higher-resolution images meant that there

is more information present on images and having more

convolutional layers meant that additional knowledge could

be extracted from the images. Compared to AlexNet's around

60 million parameters, NutriNet contains less parameters:

approximately 33 million. This is because of the difference in

dimensionality at the first fully-connected layer caused by the

additional convolutional layer2 . Figure 1 contains a diagram

of the NutriNet architecture. The food images that were used

to train the NutriNet model were gathered from the Internet -

the procedure is described in the protocol text.

For the food image segmentation problem, we used two

different existing architectures: fully convolutional networks

(FCNs)15 and deep residual networks (ResNet)16 , both of

which represented the state of the art for image segmentation

when we used them to develop their respective food image

segmentation solutions. There are multiple FCN variants

that were introduced by Long et al.: FCN-32s, FCN-16s

and FCN-8s15 . FCN-32s outputs a pixel map based on the

predictions by the FCN's final layer, whereas the FCN-16s

variant combines these predictions with those by an earlier

layer. FCN-8s considers yet another layer's predictions and

is therefore able to make predictions at the finest grain, which

is why it is suitable for food image recognition. The FCN-8s

that we used was pre-trained on the PASCAL Visual Object

Classes (PASCAL VOC) dataset17 and trained and tested on

images of food replicas (henceforth 'fake food')18 due to their

visual resemblance to real food and due to a lack of annotated

images of real food on a pixel level. Fake food is used

in different behavioral studies and images are taken for all

dishes from all study participants. Because the food contents

of these images are known, it makes the image dataset useful

for deep learning model training. Dataset processing steps

are described in the protocol text.

The ResNet-based solution was developed in the scope

of the Food Recognition Challenge (FRC)19 . It uses the

Hybrid Task Cascade (HTC)20 method with a ResNet-10116

backbone. This is a state-of-the-art approach for the

image segmentation problem that can use different feature

extractors, or backbones. We considered other backbone

networks as well, particularly other ResNet variants such

as ResNet-5016 , but ResNet-101 was the most suitable

due to its depth and ability to represent input images in a

complex enough manner. The dataset used for training the

HTC ResNet-101 model was the FRC dataset with added

augmented images. These augmentations are presented in

the protocol text.

https://www.jove.com
https://www.jove.com/

Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com March 2021 • 169 • e61906 • Page 4 of 17

This article is intended as a resource for machine learning

experts looking for information about which deep learning

architectures and data augmentation steps perform well for

the problems of food image recognition and segmentation,

as well as for nutrition researchers looking to use our

approach to automate food image recognition for use in

dietary assessment. In the paragraphs below, deep learning

solutions and datasets from the food image recognition field

are presented. In the protocol text, we detail how each of

the three approaches was used to train deep neural network

models that can be used for automated dietary assessment.

Additionally, each protocol section contains a description of

how the food image datasets used for training and testing

were acquired and processed.

DCNNs generally achieved substantially better results than

other methods for food image recognition and segmentation,

which is why the vast majority of recent research in the

field is based on these networks. Kawano et al. used

DCNNs to complement manual approaches21 and achieved

a classification accuracy of 72.26% on the UEC-FOOD100

dataset22 . Christodoulidis et al. used them exclusively

to achieve a higher accuracy of 84.90% on a self-

acquired dataset23 . Tanno et al. developed DeepFoodCam

- a smartphone app for food image recognition that

uses DCNNs24 . Liu et al. presented a system that

performs an Internet of Things-based dietary assessment

using DCNNs25 . Martinel et al. introduced a DCNN-based

approach that exploits the specifics of food images26 and

reported an accuracy of 90.27% on the Food-101 dataset27 .

Zhou et al. authored a review of deep learning solutions in the

food domain28 .

Recently, Zhao et al. proposed a network specifically for food

image recognition in mobile applications29 . This approach

uses a smaller 'student' network that learns from a larger

'teacher' network. With it, they managed to achieve an

accuracy of 84% on the UEC-FOOD25630 and an accuracy

of 91.2% on the Food-101 dataset27 . Hafiz et al. used DCNNs

to develop a beverage-only image recognition solution and

reported a very high accuracy of 98.51%31 . Shimoda et al.

described a novel method for detecting plate regions in food

images without the usage of pixel-wise annotation32 . Ciocca

et al. introduced a new dataset containing food items from

20 different food classes in 11 different states (solid, sliced,

creamy paste, etc.) and presented their approach for training

recognition models that are able to recognize the food state,

in addition to the food class33 . Knez et al. evaluated food

image recognition solutions for mobile devices34 . Finally,

Furtado et al. conducted a study on how the human visual

system compares to the performance of DCNNs and found

that human recognition still outperforms DCNNs with an

accuracy of 80% versus 74.5%35 . The authors noted that

with a small number of food classes, the DCNNs perform

well, but on a dataset with hundreds of classes, human

recognition accuracy is higher35 , highlighting the complexity

of the problem.

Despite its state-of-the-art results, deep learning has a major

drawback - it requires a large input dataset to train the model

on. In the case of food image recognition, a large food image

dataset is required, and this dataset needs to encompass as

many different real-world scenarios as possible. In practice

this means that for each individual food or beverage item, a

large collection of images is required, and as many different

items as possible need to be present in the dataset. If there

are not enough images for a specific item in the dataset,

that item is unlikely to be recognized successfully. On the

other hand, if only a small number of items is covered by the

https://www.jove.com
https://www.jove.com/

Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com March 2021 • 169 • e61906 • Page 5 of 17

dataset, the solution will be limited in scope, and only able to

recognize a handful of different foods and beverages.

Multiple datasets were made available in the past. The

Pittsburgh Fast-Food Image Dataset (PFID)3 was introduced

to encourage more research in the field of food image

recognition. The University of Electro-Communications

Food 100 (UEC-FOOD100)22 and University of Electro-

Communications Food 256 (UEC-FOOD256)30 datasets

contain Japanese dishes, expanded with some international

dishes in the case of the UEC-FOOD256 dataset. The

Food-101 dataset contains popular dishes acquired from

a website27 . The Food-5036 and Video Retrieval Group

Food 172 (VireoFood-172)37 datasets are Chinese-based

collections of food images. The University of Milano-Bicocca

2016 (UNIMIB2016) dataset is composed of images of food

trays from an Italian canteen38 . Recipe1M is a large-scale

dataset of cooking recipes and food images39 . The Food-475

dataset40 collects four previously published food image

datasets27,30 ,36 ,37 into one. The Beijing Technology and

Business University Food 60 (BTBUFood-60) is a dataset

of images meant for food detection41 . Recently, the ISIA

Food-500 dataset42 of miscellaneous food images was made

available. In comparison to other publicly available food

image datasets, it contains a large number of images,

divided into 500 food classes, and is meant to advance the

development of multimedia food recognition solutions42 .

Protocol

1. Food image recognition with NutriNet

1. Obtaining the food image dataset

1. Gather a list of different foods and beverages that

will be the outputs of the food image recognition

model. A varied list of popular foods and beverages

is preferred, as that will allow the training of a robust

food image recognition model.

2. Save the food and beverage list in a text file (e.g.,

'txt' or 'csv').

NOTE: The text file used by the authors of this

article can be found in the supplemental files

('food_items.txt') and includes a list of 520 Slovenian

food items.

3. Write or download a Python43 script that uses the

Google Custom Search API44 to download images

of each food item from the list and saves them into

a separate folder for each food item.

NOTE: The Python script used by the authors of

this article can be found in the supplemental files

('download_images.py'). If this script is used, the

Developer Key (variable 'developerKey', line 8 in the

Python script code) and Custom Search Engine ID

(variable 'cx', line 28 in the Python script code) need

to be replaced with values specific to the Google

account being used.

4. Run the Python script from step 1.1.3 (e.g., with the

command: 'python download_images.py').

2. (Optional) Cleaning the food image dataset

1. Train a food image detection model in the same way

as in section 1.4, except use only two outputs (food,

non-food) as opposed to the list of outputs from step

1.1.1.

NOTE: The authors of this article used images

combined from recipe websites and the ImageNet

dataset45 to train the food image detection model.

Since the focus here is on food image recognition

and this is an optional step for cleaning the

recognition dataset, further details are omitted.

https://www.jove.com
https://www.jove.com/

Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com March 2021 • 169 • e61906 • Page 6 of 17

Instead, more details about this approach can be

found in Mezgec et al.2 .

2. Run the detection model from step 1.2.1 on the food

image dataset that is the result of step 1.1.4.

3. Delete every image that was tagged as non-food by

the detection model from step 1.2.1.

4. Manually check the food image dataset for other

erroneous or low-quality images, and for image

duplicates.

5. Delete images found in step 1.2.4.

3. Augmenting the food image dataset

1. Create a new version of each image from the

food image dataset by rotating it by 90° using the

CLoDSA library46 (lines 19 to 21 in the included

Python script).

NOTE: The Python script containing all the CLoDSA

commands used by the authors of this article can

be found in a file included in the supplemental files

('nutrinet_augmentation.py'). If this script is used,

the Input Path (variable 'INPUT_PATH', line 8 in

the Python script code) and Output Path (variable

'OUTPUT_PATH', line 11 in the Python script code)

need to be replaced with paths to the desired folders.

2. Create a new version of each image from the food

image dataset by rotating it by 180° using the

CLoDSA library (lines 19 to 21 in the included Python

script).

3. Create a new version of each image from the food

image dataset by rotating it by 270° using the

CLoDSA library (lines 19 to 21 in the included Python

script).

4. Create a new version of each image from the food

image dataset by flipping it horizontally using the

CLoDSA library (lines 23 and 24 in the included

Python script).

5. Create a new version of each image from the food

image dataset by adding random color noise to it

using the CLoDSA library (lines 26 and 27 in the

included Python script).

6. Create a new version of each image from the food

image dataset by zooming into it by 25% using the

CLoDSA library (lines 29 and 30 in the included

Python script).

7. Save images from steps 1.3.1-1.3.6, along with the

original images (lines 16 and 17 in the included

Python script), into a new food image dataset (in

total, 7 variants per food image). This is done by

executing the command in line 32 of the included

Python script.

4. Performing food image recognition

1. Import the food image dataset from step 1.3.7 into

the NVIDIA DIGITS environment47 , dividing the

dataset into training, validation and testing subsets

in the NVIDIA DIGITS user interface.

2. Copy and paste the definition text of the NutriNet

architecture2 into NVIDIA DIGITS as a custom

network.

NOTE: The NutriNet architecture definition text

can be found in the supplemental files

('nutrinet.prototxt').

3. (Optional) Define training hyperparameters in the

NVIDIA DIGITS user interface.

https://www.jove.com
https://www.jove.com/

Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com March 2021 • 169 • e61906 • Page 7 of 17

NOTE: Hyperparameters are parameters that

are used to define the training process

prior to its start. The hyperparameters used

by the authors of this article can be

found in a file included in the supplemental

files ('nutrinet_hyperparameters.prototxt'). While

experimentation is needed for each dataset to find

the optimal hyperparameters, the file contains a

hyperparameter configuration which can be copied

into the NVIDIA DIGITS user interface. Furthermore,

NVIDIA DIGITS populates the hyperparameters with

default values which can be used as a baseline. This

step is therefore optional.

4. Run the training of the NutriNet model.

5. After training is complete, take the best-performing

NutriNet model iteration. This model is then used for

testing the performance of this approach.

NOTE: There are multiple ways to determine the

best-performing model iteration. A straightforward

way to do this is as follows. NVIDIA DIGITS outputs

a graph of accuracy measures for each training

epoch. Check which epoch achieved the lowest loss

value for the validation subset of the food image

dataset - that model iteration can be considered

best-performing. An optional step in determining the

best-performing model iteration is to observe how

the loss value for the training subset changes from

epoch to epoch and if it starts to drop continuously

while the loss value for the validation subset remains

the same or rises continuously, take the epoch prior

to this drop in training loss value, as that can signal

when the model started overfitting on the training

images.

2. Food image segmentation with FCNs

1. Obtaining the fake-food image dataset

1. Obtain a dataset of fake-food images. Fake-food

images are gathered by researchers conducting

behavioral studies using food replicas.

NOTE: The authors of this article received images of

fake food that were collected in a lab environment18 .

2. Manually annotate every food image on a pixel level

- each pixel in the image must contain information

about which food class it belongs to. The result of

this step is one annotation image for each image

from the food image dataset, where each pixel

represents one of the food classes.

NOTE: There are many tools to achieve this - the

authors of this article used JavaScript Segment

Annotator48 .

2. Augmenting the fake-food image dataset

1. Perform the same steps as in section 1.3, but only

on images from the training subset of the food image

dataset.

NOTE: With the exception of step 1.3.5, all

data augmentation steps need to be performed

on corresponding annotation images as well. If

the script from section 1.3 is used, the Input

Path (variable 'INPUT_PATH', line 8 in the

Python43 script code) and Output Path (variable

'OUTPUT_PATH', line 11 in the Python script code)

need to be replaced with paths to the desired

folders. In addition, set the Problem (variable

'PROBLEM', line 6 in the Python script code) to

'instance_segmentation' and the Annotation Mode

(variable 'ANNOTATION_MODE', line 7 in the

https://www.jove.com
https://www.jove.com/

Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com March 2021 • 169 • e61906 • Page 8 of 17

Python script code) and Output Mode (variable

'OUTPUT_MODE', line 10 in the Python script code)

to 'coco'.

3. Performing fake-food image segmentation

1. Perform the same steps as in section 1.4, with the

exception of step 1.4.2. In place of that step, perform

steps 2.3.2 and 2.3.3.

NOTE: Hyperparameters are parameters that are

used to define the training process prior to its

start. The training hyperparameters used by the

authors of this article for the optional step 1.4.3

can be found in a file included in the supplemental

files ('fcn-8s_hyperparameters.prototxt'). While

experimentation is needed for each dataset to

find the optimal set of hyperparameters, the file

contains a hyperparameter configuration which

can be copied into the NVIDIA DIGITS47 user

interface. Furthermore, NVIDIA DIGITS populates

the hyperparameters with default values which can

be used as a baseline.

2. Copy and paste the definition text of the FCN-8s

architecture15 into the NVIDIA DIGITS environment

as a custom network.

NOTE: The FCN-8s architecture definition text is

publicly available on GitHub49 .

3. Enter the path to the pre-trained FCN-8s model

weights into the NVIDIA DIGITS user interface.

NOTE: These model weights were pre-trained on the

PASCAL VOC dataset17 and can be found on the

Internet49 .

3. Food image segmentation with HTC ResNet

1. Obtaining the food image dataset

1. Download the food image dataset from the FRC

website19 .

2. Augmenting the food image dataset

1. Perform steps 1.3.1-1.3.4.

NOTE: The Python43 script containing all the

CLoDSA46 commands used by the authors of

this article can be found in a file included

in the supplemental files ('frc_augmentation.py').

If this script is used, the Input Path (variable

'INPUT_PATH', line 8 in the Python script code) and

Output Path (variable 'OUTPUT_PATH', line 11 in

the Python script code) need to be replaced with

paths to the desired folders.

2. Create a new version of each image from the food

image dataset by adding Gaussian blur to it using

the CLoDSA library (lines 26 and 27 in the included

Python script).

3. Create a new version of each image from the food

image dataset by sharpening it using the CLoDSA

library (lines 29 and 30 in the included Python script).

4. Create a new version of each image from the food

image dataset by applying gamma correction to it

using the CLoDSA library (lines 32 and 33 in the

included Python script).

5. Save images from steps 3.2.1-3.2.4, along with the

original images (lines 16 and 17 in the included

Python script), into a new food image dataset (in

total, 8 variants per food image). This is done by

executing the command in line 35 of the included

Python script.

6. Save images from steps 3.2.2-3.2.4, along with the

original images (lines 16 and 17 in the included

https://www.jove.com
https://www.jove.com/

Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com March 2021 • 169 • e61906 • Page 9 of 17

Python script), into a new food image dataset (in

total, 4 variants per food image). This is done by

deleting lines 19 to 24 of the included Python script

and executing the command in line 35.

3. Performing food image segmentation

1. Modify the existing HTC20 ResNet-101

architecture16 definition from the MMDetection

library50 in sections 'model settings' and 'dataset

settings' of the architecture definition file so that it

accepts the food image datasets from steps 3.1.1,

3.2.5 and 3.2.6.

2. (Optional) Modify the HTC ResNet-101 architecture

definition from step 3.3.1 to define training

hyperparameters: batch size in section 'dataset

settings', solver type and learning rate in section

'optimizer', learning policy in section 'learning policy'

and number of training epochs in section 'runtime

settings' of the architecture definition file.

NOTE: The modified HTC ResNet-101 architecture

definition file can be found in the supplemental

files ('htc_resnet-101.py'). Hyperparameters are

parameters that are used to define the training

process prior to its start. While experimentation is

needed for each dataset to find the optimal set

of hyperparameters, the file already contains a

hyperparameter configuration which can be used

without modification. This step is therefore optional.

3. Run the training of the HTC ResNet-101

model on the food image dataset from step

3.1.1 using the MMDetection library (e.g., with

the command: 'python mmdetection/tools/train.py

htc_resnet-101.py').

4. After the training from step 3.3.3 is complete,

take the best-performing HTC ResNet-101 model

iteration and fine-tune it by running the next phase of

training on the food image dataset from step 3.2.5.

NOTE: There are multiple ways to determine the

best-performing model iteration. A straightforward

way to do this is as follows. The MMDetection

library outputs values of accuracy measures for each

training epoch in the command line interface. Check

which epoch achieved the lowest loss value for the

validation subset of the food image dataset - that

model iteration can be considered best-performing.

An optional step in determining the best-performing

model iteration is to observe how the loss value for

the training subset changes from epoch to epoch

and if it starts to drop continuously while the loss

value for the validation subset remains the same or

rises continuously, take the epoch prior to this drop

in training loss value, as that can signal when the

model started overfitting on the training images.

5. After the training from step 3.3.4 is complete,

take the best-performing HTC ResNet-101 model

iteration and fine-tune it by running the next phase of

training on the food image dataset from step 3.2.6.

NOTE: See note for step 3.3.4.

6. After the training from step 3.3.5 is complete,

take the best-performing HTC ResNet-101 model

iteration and fine-tune it by again running the next

phase of training on the food image dataset from

step 3.2.5.

NOTE: See note for step 3.3.4.

7. After the training from step 3.3.6 is complete,

take the best-performing HTC ResNet-101 model

https://www.jove.com
https://www.jove.com/

Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com March 2021 • 169 • e61906 • Page 10 of 17

iteration. This model is then used for testing the

performance of this approach.

NOTE: See note for step 3.3.4. Steps 3.3.3-3.3.7

yielded the best results for the purposes defined by

the authors of this article. Experimentation is needed

for each dataset to find the optimal sequence of

training and data augmentation steps.

Representative Results

NutriNet was tested against three popular deep learning

architectures of the time: AlexNet14 , GoogLeNet51 and

ResNet16 . Multiple training parameters were also tested for

all architectures to define the optimal values2 . Among these

is the choice of solver type, which determines how the loss

function is minimized. This function is the primary quality

measure for training neural networks as it is better suited for

optimization during training than classification accuracy. We

tested three solvers: Stochastic Gradient Descent (SGD)52 ,

Nesterov's Accelerated Gradient (NAG)53 and the Adaptive

Gradient algorithm (AdaGrad)54 . The second parameter is

batch size, which defines the number of images that are

processed at the same time. The depth of the deep learning

architecture determined the value of this parameter, as

deeper architectures require more space in the GPU memory

- the consequence of this approach was that the memory was

completely filled with images for all architectures, regardless

of depth. The third parameter is learning rate, which defines

the speed with which the neural network parameters are

being changed during training. This parameter was set in

unison with the batch size, as the number of concurrently

processed images dictates the convergence rate. AlexNet

models were trained using a batch size of 256 images and a

base learning rate of 0.02; NutriNet used a batch size of 128

images and a rate of 0.01; GoogLeNet 64 images and a rate

of 0.005; and ResNet 16 images and a rate of 0.00125. Three

other parameters were fixed for all architectures: learning rate

policy (step-down), step size (30%) and gamma (0.1). These

parameters jointly describe how the learning rate is changing

in every epoch. The idea behind this approach is that the

learning rate is being gradually lowered to fine-tune the model

the closer it gets to the optimal loss value. Finally, the number

of training epochs was also fixed to 150 for all deep learning

architectures2 .

The best result among all the parameters tested that NutriNet

achieved was a classification accuracy of 86.72% on the

recognition dataset, which was around 2% higher than the

best result for AlexNet and slightly higher than GoogLeNet's

best result. The best-performing architecture overall was

ResNet (by around 1%), however the training time for ResNet

is substantially higher compared to NutriNet (by a factor

of approximately five), which is important if models are

continuously re-trained to improve accuracy and the number

of recognizable food items. NutriNet, AlexNet and GoogLeNet

achieved their best results using the AdaGrad solver,

whereas ResNet's best model used the NAG solver. NutriNet

was also tested on the publicly available UNIMIB2016 food

image dataset38 . This dataset contains 3,616 images of 73

different food items. NutriNet achieved a recognition accuracy

of 86.39% on this dataset, slightly outperforming the baseline

recognition result of the authors of the dataset, which was

85.80%. Additionally, NutriNet was tested on a small dataset

of 200 real-world images of 115 different food and beverage

items, where NutriNet achieved a top-5 accuracy of 55%.

To train the FCN-8s fake-food image segmentation model, we

used Adam55 as the solver type, as we found that it performed

optimally for this task. The base learning rate was set very

low - to 0.0001. The reason for the low number is the fact

https://www.jove.com
https://www.jove.com/

Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com March 2021 • 169 • e61906 • Page 11 of 17

that only one image could be processed at a time, which is

a consequence of the pixel-level classification process. The

GPU memory requirements for this approach are significantly

greater than image-level classification. The learning rate thus

had to be set low so that the parameters were not being

changed too fast and converge to less optimal values. The

number of training epochs was set to 100, while the learning

rate policy, step size and gamma were set to step-down, 34%

and 0.1, respectively, as these parameters produced the most

accurate models.

Accuracy measurements of the FCN-8s model were

performed using the pixel accuracy measure15 , which

is analogous to the classification accuracy of traditional

deep learning networks, the main difference being that the

accuracy is computed on the pixel level instead of on the

image level:

where PA is the pixel accuracy measure, nij is the number of

pixels from class i predicted to belong to class j and ti = Σj

nij is the total number of pixels from class i in the ground-

truth labels1 . In other words, the pixel accuracy measure

is computed by dividing correctly predicted pixels by the

total number of pixels. The final accuracy of the trained

FCN-8s model was 92.18%. Figure 2 shows three example

images from the fake-food image dataset (one from each of

the training, validation and testing subsets), along with the

corresponding ground-truth and model prediction labels.

The parameters to train the HTC20 ResNet-101 model for

food image segmentation were set as follows: the solver type

used was SGD because it outperformed other solver types.

The base learning rate was set to 0.00125 and the batch size

to 2 images. The number of training epochs was set to 40 per

training phase, and multiple training phases were performed

- first on the original FRC dataset without augmented images,

then on the 8x-augmented and 4x-augmented FRC dataset

multiple times in an alternating fashion, each time taking the

best-performing model and fine-tuning it in the next training

phase. More details on the training phases can be found in

section 3.3 of the protocol text. Finally, the step-down learning

policy was used, with fixed epochs for when the learning rate

decreased (epochs 28 and 35 for the first training phase). An

important thing to note is that while this sequence of training

phases produced the best results in our testing in the scope

of the FRC, using another dataset might require a different

sequence to produce optimal results.

This ResNet-based solution for food image segmentation was

evaluated using the following precision measure19 :

where P is precision, TP is the number of true positive

predictions by the food image segmentation model, FP is the

number of false positive predictions and IoU is Intersection

over Union, which is computed with this equation:

where Area of Overlap represents the number of predictions

by the model that overlap with the ground truth, and Area

of Union represents the total number of predictions by the

model together with the ground truth, both on a pixel level and

for each individual food class. Recall is used as a secondary

measure and is calculated in a similar way, using the following

formula19 :

https://www.jove.com
https://www.jove.com/

Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com March 2021 • 169 • e61906 • Page 12 of 17

where R is recall and FN is the number of false negative

predictions by the food image segmentation model. The

precision and recall measures are then averaged across all

classes in the ground truth. Using these measures, our model

achieved an average precision of 59.2% and an average

recall of 82.1%, which ranked second in the second round

of the Food Recognition Challenge19 . This result was 4.2%

behind the first place and 5.3% ahead of the third place in

terms of the average precision measure. Table 1 contains the

results for the top-4 participants in the competition.

Figure 1: Diagram of the NutriNet deep neural network architecture. This figure has been published in Mezgec et al.2 .

Please click here to view a larger version of this figure.

https://www.jove.com
https://www.jove.com/
https://www.jove.com/files/ftp_upload/61906/61906fig01large.jpg

Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com March 2021 • 169 • e61906 • Page 13 of 17

Figure 2: Images from the fake-food image dataset. Original images (left), manually-labelled ground-truth labels (middle)

and predictions from the FCN-8s model (right). This figure has been published in Mezgec et al.1 . Please click here to view a

larger version of this figure.

Team Name Placement Average Precision Average Recall

rssfete 1 63.4% 88.6%

simon_mezgec 2 59.2% 82.1%

arimboux 3 53.9% 73.5%

latentvec 4 48.7% 71.1%

Table 1: Top-4 results from the second round of the Food Recognition Challenge. Average precision is taken as the

primary performance measure and average recall as a secondary measure. Results are taken from the official competition

leaderboard19 .

Supplemental Files. Please click here to download this File.

Discussion

In recent years, deep neural networks have been validated

multiple times as a suitable solution for recognizing food

images10,11 ,12 ,21 ,23 ,25 ,26 ,29 ,31 ,33 . Our work presented in

this article serves to further prove this1,2 . The single-output

food image recognition approach is straightforward and can

be used for simple applications where images with only one

food or beverage item are expected2 .

https://www.jove.com
https://www.jove.com/
https://www.jove.com/files/ftp_upload/61906/61906fig02large.jpg
https://www.jove.com/files/ftp_upload/61906/61906fig02large.jpg
https://www.jove.com/files/ftp_upload/61906/simon_mezgec_supplemental_files_revision1_.zip

Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com March 2021 • 169 • e61906 • Page 14 of 17

The food image segmentation approach seems particularly

suitable for recognizing food images in general, without any

restriction on the number of food items1 . Because it works

by classifying each individual pixel of the image, it is able to

not only recognize any number of food items in the image,

but also specify where a food item is located, as well as how

large it is. The latter can then be used to perform food weight

estimation, particularly if used with either a reference object

or a fixed-distance camera.

There has been some work done regarding the availability

of food image datasets3,22 ,27 ,30 ,36 ,37 ,38 ,39 ,40 ,41 ,42 , and

we hope more will be done in the future, particularly

when it comes to aggregating food image datasets from

different regions across the world, which would enable more

robust solutions to be developed. Currently, the accuracy

of automatic food image recognition solutions has not yet

reached human-level accuracy35 , and this is likely in large

part due to the usage of food image datasets of insufficient

size and quality.

In the future, our goal will be to further evaluate the developed

procedures on real-world images. In general, datasets in this

field often contain images taken in controlled environments

or images that were manually optimized for recognition. This

is why it is important to gather a large and diverse real-

world food image dataset to encompass all the different

food and beverage items that individuals might want to

recognize. The first step towards this was provided by the

Food Recognition Challenge, which included a dataset of

real-world food images19 , but further work needs to be done

to validate this approach on food images from all around the

world and in cooperation with dietitians.

Disclosures

The authors have nothing to disclose.

Acknowledgments

The authors would like to thank Tamara Bucher from the

University of Newcastle, Australia, for providing the fake-food

image dataset. This work was supported by the European

Union's Horizon 2020 research and innovation programs

(grant numbers 863059 - FNS-Cloud, 769661 - SAAM); and

the Slovenian Research Agency (grant number P2-0098).

The European Union and Slovenian Research Agency had no

role in the design, analysis or writing of this article.

References

1. Mezgec, S., Eftimov, T., Bucher, T., Koroušić Seljak,

B. Mixed Deep Learning and Natural Language

Processing Method for Fake-Food Image Recognition

and Standardization to Help Automated Dietary

Assessment. Public Health Nutrition. 22 (7), 1193-1202

(2019).

2. Mezgec, S., Koroušić Seljak, B. NutriNet: A Deep

Learning Food and Drink Image Recognition System for

Dietary Assessment. Nutrients. 9 (7), 657 (2017).

3. Chen, M. et al. PFID: Pittsburgh Fast-Food Image

Dataset. Proceedings of the ICIP 2009. 289-292 (2009).

4. Joutou, T., Yanai, K. A Food Image Recognition System

with Multiple Kernel Learning. Proceedings of the ICIP

2009. 285-288 (2009).

5. Yang, S., Chen, M., Pomerlau, D., Sukthankar, R. Food

Recognition using Statistics of Pairwise Local Features.

Proceedings of the CVPR 2010. 2249-2256 (2010).

https://www.jove.com
https://www.jove.com/

Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com March 2021 • 169 • e61906 • Page 15 of 17

6. Anthimopoulos, M. M., Gianola, L., Scarnato, L., Diem,

P., Mougiakakou, S. G. A Food Recognition System

for Diabetic Patients Based on an Optimized Bag-of-

Features Model. IEEE Journal of Biomedical and Health

Informatics. 18 (4), 1261-1271 (2014).

7. LeCun, Y., Bengio, Y., Hinton, G. Deep Learning. Nature.

521, 436-444 (2015).

8. Deng, L., Yu, D. Deep Learning: Methods and

Applications. Foundations and Trends in Signal

Processing. 7 (3-4), 197-387 (2014).

9. Hubel, D. H., Wiesel, T. N. Receptive Fields, Binocular

Interaction and Functional Architecture in the Cat's Visual

Cortex. The Journal of Physiology. 160 (1), 106-154

(1962).

10. Singla, A., Yuan, L., Ebrahimi, T. Food/Non-Food

Image Classification and Food Categorization using

Pre-Trained GoogLeNet Model. Proceedings of the

MADiMa'16. 3-11 (2016).

11. Yanai, K., Kawano, Y. Food Image Recognition using

Deep Convolutional Network with Pre-Training and Fine-

Tuning. Proceedings of the ICMEW 2015. 1-6 (2015).

12. Liu, C. et al. DeepFood: Deep Learning-Based

Food Image Recognition for Computer-Aided Dietary

Assessment. Proceedings of the ICOST 2016. 37-48

(2016).

13. De Sousa Ribeiro, F. et al. An End-to-End Deep

Neural Architecture for Optical Character Verification and

Recognition in Retail Food Packaging. Proceedings of

the ICIP 2018. 2376-2380 (2018).

14. Krizhevsky, A., Sutskever, I., Hinton, G. ImageNet

Classification with Deep Convolutional Neural Networks.

Proceedings of the NIPS'12. 1097-1105 (2012).

15. Long, J., Shelhamer, E., Darrell, T. Fully Convolutional

Networks for Semantic Segmentation. Proceedings of

the CVPR 2015. 3431-3440 (2015).

16. He, K., Zhang, X., Ren, S., Sun, J. Deep Residual

Learning for Image Recognition. Proceedings of the

CVPR 2016. 770-778 (2016).

17. PASCAL VOC Project. PASCAL Visual Object Classes.

http://host.robots.ox.ac.uk/pascal/VOC (2020).

18. Bucher, T., van der Horst, K., Siegrist, M. Fruit

for Dessert. How People Compose Healthier Meals.

Appetite. 60 (1), 74-80 (2013).

19. AICrowd. Food Recognition Challenge. https://

www.aicrowd.com/challenges/food-recognition-

challenge (2020).

20. Chen, K. et al. Hybrid Task Cascade for Instance

Segmentation. Proceedings of the CVPR 2019.

4974-4983 (2019).

21. Kawano, Y., Yanai, K. Food Image Recognition with

Deep Convolutional Features. Proceedings of the

UbiComp 2014. 589-593 (2014).

22. Matsuda, Y., Hoashi, H., Yanai, K. Recognition of

Multiple-Food Images by Detecting Candidate Regions.

Proceedings of the ICME 2012. 25-30 (2012).

23. Christodoulidis, S., Anthimopoulos, M. M., Mougiakakou,

S. G. Food Recognition for Dietary Assessment using

Deep Convolutional Neural Networks. Proceedings of the

ICIAP 2015. 458-465 (2015).

24. Tanno, R., Okamoto, K., Yanai, K. DeepFoodCam:

A DCNN-Based Real-Time Mobile Food Recognition

System. Proceedings of the MADiMa'16. 89-89 (2016).

25. Liu, C. et al. A New Deep Learning-Based Food

Recognition System for Dietary Assessment on An Edge

https://www.jove.com
https://www.jove.com/

Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com March 2021 • 169 • e61906 • Page 16 of 17

Computing Service Infrastructure. IEEE Transactions on

Services Computing. 11 (2), 249-261 (2017).

26. Martinel, N., Foresti, G. L., Micheloni, C. Wide-Slice

Residual Networks for Food Recognition. Proceedings of

the IEEE WACV 2018. 567-576 (2018).

27. Bossard, L., Guillaumin, M., Van Gool, L. Food-101-

Mining Discriminative Components with Random

Forests. Proceedings of the ECCV'14. 446-461 (2014).

28. Zhou, L., Zhang, C., Liu, F., Qiu, Z., He, Y. Application

of Deep Learning in Food: A Review. Comprehensive

Reviews in Food Science and Food Safety. 18,

1793-1811 (2019).

29. Zhao, H., Yap, K.-H., Kot, A. C., Duan, L. JDNet: A

Joint-Learning Distilled Network for Mobile Visual Food

Recognition. IEEE Journal of Selected Topics in Signal

Processing. 14 (4), 665-675 (2020).

30. Kawano, Y., Yanai, K. Automatic Expansion of a Food

Image Dataset Leveraging Existing Categories with

Domain Adaptation. Proceedings of the ECCV'14. 3-17

(2014).

31. Hafiz, R., Haque, M. R., Rakshit, A., Uddin, M. S.

Image-Based Soft Drink Type Classification and Dietary

Assessment System using Deep Convolutional Neural

Network with Transfer Learning. Journal of King Saud

University - Computer and Information Sciences. In

Press (2020).

32. Shimoda, W., Yanai, K. Weakly-Supervised Plate and

Food Region Segmentation. Proceedings of the ICME

2020. 1-6 (2020).

33. Ciocca, G., Micali, G., Napoletano, P. State Recognition

of Food Images using Deep Features. IEEE Access. 8,

32003-32017 (2020).

34. Knez, S., Šajn, L. Food Object Recognition using a

Mobile Device: Evaluation of Currently Implemented

Systems. Trends in Food Science & Technology. 99,

460-471 (2020).

35. Furtado, P., Caldeira, M., Martins, P. Human Visual

System vs Convolution Neural Networks in Food

Recognition Task: An Empirical Comparison. Computer

Vision and Image Understanding. 191, 102878 (2020).

36. Chen, M.-Y. et al. Automatic Chinese Food Identification

and Quantity Estimation. SA'12 Technical Briefs. 1-4

(2012).

37. Chen, J., Ngo, C.-W. Deep-Based Ingredient

Recognition for Cooking Recipe Retrieval. Proceedings

of the MM'16. 32-41 (2016).

38. Ciocca, G., Napoletano, P., Schettini, R. Food

Recognition: A New Dataset, Experiments, and Results.

IEEE Journal of Biomedical and Health Informatics. 21

(3), 588-598 (2017).

39. Salvador, A. et al. Learning Cross-Modal Embeddings for

Cooking Recipes and Food Images. Proceedings of the

IEEE CVPR 2017. 3020-3028 (2017).

40. Ciocca, G., Napoletano, P., Schettini, R. CNN-Based

Features for Retrieval and Classification of Food Images.

Computer Vision and Image Understanding. 176 - 177,

70-77 (2018).

41. Cai, Q., Li, J., Li, H., Weng, Y. BTBUFood-60: Dataset for

Object Detection in Food Field. Proceedings of the IEEE

BigComp 2019. 1-4 (2019).

42. Min, W. et al. ISIA Food-500: A Dataset for Large-Scale

Food Recognition via Stacked Global-Local Attention

Network. Proceedings of the MM'20. 393-401 (2020).

https://www.jove.com
https://www.jove.com/

Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com March 2021 • 169 • e61906 • Page 17 of 17

43. Python Software Foundation. Python. https://

www.python.org (2020).

44. Google. Google Custom Search API. https://

developers.google.com/resources/api-libraries/

documentation/customsearch/v1/python/latest/

customsearch_v1.cse.html (2020).

45. Stanford Vision Lab. ImageNet. http://www.image-

net.org (2020).

46. Heras, J. CLoDSA. https://github.com/joheras/CLoDSA

(2020).

47. NVIDIA. NVIDIA DIGITS. https://developer.nvidia.com/

digits (2020).

48. Yamaguchi, K. JavaScript Segment Annotator. https://

github.com/kyamagu/js-segment-annotator (2020).

49. Shelhamer, E. Fully Convolutional Networks for

Semantic Segmentation. https://github.com/shelhamer/

fcn.berkeleyvision.org (2020).

50. Multimedia Laboratory, CUHK. MMDetection. https://

github.com/open-mmlab/mmdetection (2020).

51. Szegedy, C. et al. Going Deeper with Convolutions.

Proceedings of the CVPR 2015. 1-9 (2015).

52. Bottou, L. Large-Scale Machine Learning with Stochastic

Gradient Descent. Proceedings of the COMPSTAT'2010.

177-186 (2010).

53. Nesterov, Y. A Method of Solving a Convex

Programming Problem with Convergence Rate O(1/k2).

Doklady Akademii Nauk SSSR. 27, 372-376 (1983).

54. Duchi, J., Hazan, E., Singer, Y. Adaptive Subgradient

Methods for Online Learning and Stochastic

Optimization. Journal of Machine Learning Research. 12,

2121-2159 (2011).

55. Kingma, D. P., Ba, J. Adam: A Method for Stochastic

Optimization. arXiv Preprint. arXiv:1412.6980 (2017).

https://www.jove.com
https://www.jove.com/

