
Copyright © 2022  JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com September 2022 • 187 •  e64442 • Page 1 of 18

Through a Dog's Eyes: fMRI Decoding of Naturalistic
Videos from the Dog Cortex
Erin M.  Phillips1,  Kirsten D.  Gillette1,  Daniel D.  Dilks1,  Gregory S.  Berns1

1 Psychology Department, Emory University

Corresponding Author

Gregory S. Berns

gregory.berns@emory.edu

Citation

Phillips, E.M., Gillette, K.D., Dilks, D.D.,

Berns, G.S. Through a Dog's Eyes: fMRI

Decoding of Naturalistic Videos from the

Dog Cortex. J. Vis. Exp. (187), e64442,

doi:10.3791/64442 (2022).

Date Published

September 13, 2022

DOI

10.3791/64442

URL

jove.com/video/64442

Abstract

Recent advancements using machine learning and functional magnetic resonance

imaging (fMRI) to decode visual stimuli from the human and nonhuman cortex have

resulted in new insights into the nature of perception. However, this approach has yet

to be applied substantially to animals other than primates, raising questions about the

nature of such representations across the animal kingdom. Here, we used awake fMRI

in two domestic dogs and two humans, obtained while each watched specially created

dog-appropriate naturalistic videos. We then trained a neural net (Ivis) to classify the

video content from a total of 90 min of recorded brain activity from each. We tested

both an object-based classifier, attempting to discriminate categories such as dog,

human, and car, and an action-based classifier, attempting to discriminate categories

such as eating, sniffing, and talking. Compared to the two human subjects, for whom

both types of classifier performed well above chance, only action-based classifiers

were successful in decoding video content from the dogs. These results demonstrate

the first known application of machine learning to decode naturalistic videos from the

brain of a carnivore and suggest that the dog's-eye view of the world may be quite

different from our own.

Introduction

The brains of humans, like other primates, demonstrate

the parcellation of the visual stream into dorsal and ventral

pathways with distinct and well-known functions-the "what"

and "where" of objects1 . This what/where dichotomy has

been a useful heuristic for decades, but its anatomical

basis is now known to be much more complex, with many

researchers favoring a parcellation based on recognition

versus action ("what" vs. "how")2,3 ,4 ,5 . Additionally, while

our understanding of the organization of the primate visual

system continues to be refined and debated, much remains

unknown about how the brains of other mammalian species

represent visual information. In part, this lacuna is a result

of the historical focus on a handful of species in visual

neuroscience. New approaches to brain imaging, however,

are opening up the possibility of noninvasively studying the

visual systems of a wider range of animals, which may yield
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new insights into the organization of the mammalian nervous

system.

Dogs (Canis lupus familiaris) present a rich opportunity

to study the representation of visual stimuli in a species

evolutionarily distant from primates, as they may be the only

animal that can be trained to cooperatively participate in MRI

scanning without the need for sedation or restraints6,7 ,8 .

Due to their co-evolution with humans over the last 15,000

years, dogs also inhabit our environments and are exposed

to many of the stimuli that humans encounter on a daily

basis, including video screens, which are the preferred

way of presenting stimuli in an MRI scanner. Even so,

dogs may process these common environmental stimuli in

ways that are quite different from humans, which begs

the question of how their visual cortex is organized. Basic

differences-such as a lack of a fovea, or being a dichromat-

may have significant downstream consequences not only

for lower-level visual perception but also for higher-level

visual representation. Several fMRI studies in dogs have

demonstrated the existence of both face- and object-

processing regions that appear to follow the general dorsal/

ventral stream architecture seen in primates, although it

remains unclear whether dogs have face-processing regions

per se or whether these regions are selective for the

morphology of the head (e.g., dog vs. human)9,10 ,11 ,12 ,13 .

Regardless, the brain of a dog, being smaller than most

primates, would be predicted to be less modularized14 , so

there may be more intermixing of types of information in the

streams or even privileging of certain types of information, like

actions. It has been suggested, for example, that movement

might be a more salient feature in canine visual perception

than texture or color15 . Additionally, as dogs do not have

hands, one of the primary means through which we interact

with the world, their visual processing, particularly of objects,

may be quite different than that of primates. In line with this,

we recently found evidence that interaction with objects by

mouth versus paw resulted in greater activation in object-

selective regions in the dog brain16 .

Although dogs may be accustomed to video screens in their

home environment, that does not mean they are used to

looking at images in an experimental setting the same way

a human would. The use of more naturalistic stimuli may

help to resolve some of these questions. In the last decade,

machine learning algorithms have achieved considerable

success in decoding naturalistic visual stimuli from human

brain activity. Early successes focused on adapting classical,

blocked designs to use brain activity to both classify the

types of stimuli an individual was seeing, as well as the

brain networks that encoded these representations17,18 ,19 .

As more powerful algorithms were developed, especially

neural networks, more complex stimuli could be decoded,

including naturalistic videos20,21 . These classifiers, which

are typically trained on neural responses to these videos,

generalize to novel stimuli, allowing them to identify what

a particular subject was observing at the time of the fMRI

response. For example, certain types of actions in movies

can be accurately decoded from the human brain, like

jumping and turning, while others (e.g., dragging) cannot22 .

Similarly, although many types of objects can be decoded

from fMRI responses, general categories appear to be more

difficult. Brain decoding is not limited to humans, providing

a powerful tool to understand how information is organized

in the brains of other species. Analogous fMRI experiments

with nonhuman primates have found distinct representations

in the temporal lobe for dimensions of animacy and faciness/

bodiness, which parallels that in humans23 .
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As a first step toward understanding dogs' representations of

naturalistic visual stimuli, awake fMRI was used in two highly

MRI-adept domestic dogs to measure cortical responses to

dog-appropriate videos. In this study, naturalistic videos were

used because of their potentially greater ecological validity

to a dog and because of their demonstrated success with

neural nets that map video content to dog movement24 . Over

three separate sessions, 90 min of fMRI data were obtained

from each dog's responses to 256 unique video clips. For

comparison, the same procedure was performed on two

human volunteers. Then, using a neural network, we trained

and tested classifiers to discriminate either "objects" (e.g.,

human, dog, car) or "actions" (e.g., talking, eating, sniffing)

using varying numbers of classes. The goals of this study

were two-fold: 1) determine whether naturalistic video stimuli

could be decoded from the dog cortex; and 2) if so, provide

a first look into whether the organization was similar to that

of humans.

Protocol

The dog study was approved by the Emory University

IACUC (PROTO201700572), and all owners gave written

consent for their dog's participation in the study. Human study

procedures were approved by the Emory University IRB,

and all participants provided written consent before scanning

(IRB00069592).

1. Participants

1. Select the participants (dogs and humans) with no

previous exposure to the stimuli presented in the study.
 

NOTE: Dog participants were two local pet dogs

volunteered by their owners for participation in fMRI

training and scanning consistent with that previously

described7 . Bhubo was a 4-year-old male Boxer-mix,

and Daisy was an 11-year-old female Boston terrier-mix.

Both dogs had previously participated in several fMRI

studies (Bhubo: 8 studies, Daisy: 11 studies), some of

which involved watching visual stimuli projected onto a

screen while in the scanner. They were selected because

of their demonstrated ability to stay in the scanner without

moving for long periods of time with their owner out of

view. Two humans (one male, 34 years old, and one

female, 25 years old) also participated in the study.

Neither dogs nor humans had previous exposure to the

stimuli shown in this study.

2. Stimuli

1. Film the videos (1920 pixels x 1440 pixels, 60 frames per

second [fps]) mounted on a handheld stabilizing gimbal.
 

NOTE: In this study, the videos were filmed in Atlanta,

Georgia, in 2019.

1. Film naturalistic videos from a "dog's eye view",

holding the gimbal at approximately knee height.

Design the videos to capture everyday scenarios in

the life of a dog.
 

NOTE: These included scenes of walking, feeding,

playing, humans interacting (with each other and

with dogs), dogs interacting with each other,

vehicles in motion, and non-dog animals (Figure

1A; Supplementary Movie 1). In some clips, the

subjects in the video interacted directly with the

camera, for example, petting, sniffing, or playing

with it, while in others, the camera was ignored.

Additional footage of deer was obtained from a

locally placed camera trap (1920 pixels x 1080

pixels, 30 fps).

2. Edit the videos into 256 unique 7 s "scenes". Each

scene depicted a single event, such as humans

https://www.jove.com
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hugging, a dog running, or a deer walking. Assign

each scene a unique number and label according to

its content (see below).

2. Edit the scenes into five larger compilation videos of

approximately 6 min each. Use compilation videos rather

than one long film to present a wide variety of stimuli in

sequence.
 

NOTE: Presenting a wide variety of stimuli would be

difficult to achieve if the videos were captured in one

long "take". This is consistent with fMRI decoding studies

in humans20,22 . Additionally, presenting compilations

of short clips allowed easier creation of a hold-out set

on which the trained algorithm could be tested (see

section 7, analyses, below), as it was possible to hold

out the individual clips instead of one long movie. Four

compilation videos had 51 unique scenes, and one had

52. There were no breaks or blank screens between the

scenes.

3. Select the scenes semi-randomly to ensure that each

video contains exemplars from all the major label

categories-dogs, humans, vehicles, nonhuman animals,

and interactions.
 

NOTE: During the compiling process, all scenes were

downsampled to 1920 pixels x 1080 pixels at 30 fps to

match the resolution of the MRI projector.

3. Experimental design

1. Scan the participants in a 3T MRI scanner while watching

the compilation videos projected onto a screen mounted

at the rear of the MRI bore.

2. Play the videos without sound.

3. For dogs, achieve stable positioning of the head by prior

training to place their head in a custom-made chin rest,

molded to the lower jaw from mid-snout to behind the

mandible.

1. Affix the chin rest to a wood shelf that spans the coil

but allows enough space for the paws underneath,

resulting in each dog assuming a "sphinx" position

(Figure 1B). No restraints were used. For further

information on the training protocol, see previous

awake fMRI dog studies7 .

4. Let the subjects participate in five runs per session,

each run consisting of one compilation video watched

from start to finish, presented in a random order. For

dogs, take short breaks between each run. Deliver food

rewards during these breaks to the dog.

5. Let each subject participate in three sessions over 2

weeks. This allows the subject to watch each of the

five unique compilation videos three times, yielding an

aggregate fMRI time of 90 min per individual.

4. Imaging

1. Scan the dog participants following a protocol consistent

with that employed in previous awake fMRI dog

studies7,25 .

1. Obtain the functional scans using a single-shot

echo-planar imaging sequence to acquire volumes

of 22 sequential 2.5 mm slices with a 20% gap (TE

= 28 ms, TR = 1,430 ms, flip angle = 70°, 64 x 64

matrix, 2.5 mm in-plane voxel size, FOV = 160 mm).

2. For dogs, orient the slices dorsally to the brain with

the phase-encoding direction right-to-left, as dogs

sit in the MRI in a "sphinx" position, with the neck

in line with the brain. Phase encoding right-to-left

avoids wrap-around artifacts from the neck into the

front of the head. In addition, the major susceptibility

https://www.jove.com
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artifact in scanning dogs comes from the frontal

sinus, resulting in distortion of the frontal lobe.

2. For humans, obtain axial slices with phase-encoding in

the anterior-posterior direction.

1. To allow for comparison with the dog scans (same

TR/TE), use multiband slice acquisition (CMRR,

University of Minnesota) for the humans with a

multiband acceleration factor of 2 (GRAPPA = 2, TE

= 28 ms, TR = 1,430 ms, flip angle = 55°, 88 x 88

matrix, 2.5 mm in-plane voxels, forty four 2.5 mm

slices with a 20% gap).

3. For the dogs, also acquire a T2-weighted structural

image of the whole brain for each participant using a

turbo spin-echo sequence with 1.5 mm isotropic voxels.

For the human participants, use a T1-weighted MPRAGE

sequence with 1 mm isotropic voxels.
 

NOTE: Over the course of three sessions, approximately

4,000 functional volumes were obtained for each

participant.

5. Stimulus labels

1. In order to train a model to classify the content presented

in the videos, label the scenes first. To do this, divide

the 7 s scenes that make up each compilation video into

1.4 s clips. Label short clips rather than individual frames

as there are elements of video that cannot be captured

by still frames, some of which may be particularly salient

to dogs and, therefore, useful in decoding, such as

movement.
 

NOTE: A clip length of 1.4 s was chosen because this

was long enough to capture these dynamic elements

and closely matched the TR of 1.43 s, which allows

for performing the classification on a volume-by-volume

basis.

2. Randomly distribute these 1.4 s clips (n = 1,280) to

lab members to manually label each clip using a pre-

programmed check-box style submission form.
 

NOTE: There were 94 labels chosen to encompass

as many key features of the videos as possible,

including subjects (e.g., dog, human, cat), number of

subjects (1, 2, 3+), objects (e.g., car, bike, toy), actions

(e.g., eating, sniffing, talking), interactions (e.g., human-

human, human-dog), and setting (indoors, outdoors),

among others. This produced a 94-dimensional label

vector for each clip (Supplementary Table 1).

3. As a consistency check, select a random subset for

relabeling by a second lab member. Here, labels were

found to be highly consistent across individuals (>95%).

For those labels that were not consistent, allow the two

lab members to rewatch the clip in question and come to

a consensus on the label.

4. For each run, use timestamped log files to determine

the onset of the video stimulus relative to the first scan

volume.

5. To account for the delay between stimulus presentation

and the BOLD response, convolve the labels with a

double gamma hemodynamic response function (HRF)

and interpolate to the TR of the functional images (1,430

ms) using the Python functions numpy.convolve() and

interp().
 

NOTE: The end result was a matrix of convolved labels

by the total number of scan volumes for each participant

(94 labels x 3,932, 3,920, 3,939, and 3,925 volumes for

Daisy, Bhubo, Human 1, and Human 2, respectively).

6. Group these labels wherever necessary to create

macrolabels for further analysis. For example, combine

https://www.jove.com
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all instances of walking (dog walking, human walking,

donkey walking) to create a "walking" label.

7. To further remove redundancy in the label set, calculate

the variance inflation factor (VIF) for each label,

excluding the macrolabels, which are obviously highly

correlated.
 

NOTE: VIF is a measure of multicollinearity in predictor

variables, calculated by regressing each predictor

against every other. Higher VIFs indicate more highly

correlated predictors. This study employed a VIF

threshold of 2, reducing the 94 labels to 52 unique, largely

uncorrelated labels (Supplementary Table 1).

6. fMRI preprocessing

1. Preprocessing involves motion correction, censoring,

and normalization using the AFNI suite (NIH) and

its associated functions26,27 . Use a two-pass, six-

parameter rigid-body motion correction to align the

volumes to a target volume that is representative of the

participant's average head position across runs.

2. Perform censoring to remove volumes with more than

1 mm displacement between scans, as well as those

with outlier voxel signal intensities greater than 0.1%.

For both dogs, more than 80% of volumes were retained

after censoring, and for humans, more than 90% were

retained.

3. To improve the signal-to-noise ratio of individual voxels,

perform mild spatial smoothing using 3dmerge and a 4

mm Gaussian kernel at full-width half-maximum.

4. To control for the effect of low-level visual features, such

as motion or speed, that may differ according to stimulus,

calculate the optical flow between consecutive frames

of video clips22,28 . Calculate the optical flow using the

Farneback algorithm in OpenCV after downsampling to

10 frames per second29 .

5. To estimate the motion energy in each frame, calculate

the sum of squares of the optic flow of each pixel and

take the square root of the result, effectively calculating

the Euclidean average optic flow from one frame to the

next28,30 . This generates time courses of motion energy

for each compilation video.

6. Resample these to match the temporal resolution

of the fMRI data, convolved with a double gamma

hemodynamic response function (HRF) as above and

concatenated to align with stimulus presentation for each

subject.

7. Use this time course, along with the motion parameters

generated from the motion correction described above,

as the only regressors to a general linear model (GLM)

estimated for each voxel with AFNI's 3dDeconvolve. Use

the residuals of this model as inputs to the machine

learning algorithm described below.

7. Analyses

1. Decode those regions of the brain that contribute

significantly to the classification of visual stimuli, training

a model for each individual participant that can then

be used to classify video content based on participants'

brain data. Use the Ivis machine learning algorithm, a

nonlinear method based on Siamese neural networks

(SNNs) that has shown success on high dimensional

biological data31 .
 

NOTE: SNNs contain two identical sub-networks that are

used to learn the similarity of inputs in either supervised

or unsupervised modes. Although neural networks have

grown in popularity for brain decoding because of their

https://www.jove.com
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generally greater power over linear methods like support

vector machines (SVMs), we used an SNN here because

of its robustness to class imbalance and the need for

fewer exemplars. Compared to support vector machines

(SVM) and random forest (RF) classifiers trained on

the same data, we found Ivis to be more successful in

classifying brain data across multiple label combinations,

as determined by various metrics, including mean F1

score, precision, recall, and test accuracy (see below).

2. For each participant, convert the whole-brain residuals to

a format appropriate for input into the Ivis neural network.

Concatenate and mask the five runs in each of their three

sessions, retaining only brain voxels.

3. Flatten the spatial dimension, resulting in a two-

dimensional matrix of voxels by time.

4. Concatenate the convolved labels of the videos shown in

each run, thus corresponding to the fMRI runs.

5. Censor both the fMRI data and corresponding labels

according to the volumes flagged in preprocessing.

6. Select the target labels to be decoded-hereafter referred

to as "classes"-and retain only those volumes containing

these classes. For simplicity, treat classes as mutually

exclusive and do not include volumes belonging

to multiple classes for decoding, leaving only pure

exemplars.

7. Split the data into training and test sets. Use a five-fold

split, randomly selecting 20% of the scenes to act as the

test set.
 

NOTE: This meant that, if a given scene was selected for

the test set, all the clips and functional volumes obtained

during this scene were held out from the training set.

Had the split been performed independent of the scene,

volumes from the same scene would have appeared in

both the training set and the test set, and the classifier

would only have had to match them to that particular

scene to be successful in classifying them. However, to

correctly classify held-out volumes from new scenes, the

classifier had to match them to a more general, scene-

independent class. This was a more robust test of the

generalizability of the classifier's success compared to

holding out individual clips.

8. Balance the training set by undersampling the number of

volumes in each class to match that of the smallest class

using the scikit-learn package imbalanced-learn.

9. For each participant, train and test the Ivis algorithm

on 100 iterations, each time using a unique test-

train split (Ivis parameters: k = 5, model = "maaten",

n_epochs_without_progress = 30, supervision_weight =

1). These parameter values were largely selected on the

basis of dataset size and complexity as recommended by

the algorithm's authors in its documentation32 . "Number

of epochs without progress" and "supervision weight" (0

for unsupervised, 1 for supervised) underwent additional

parameter tuning to optimize the model.

10. To reduce the number of features used to train

the classifier from the whole brain to only the most

informative voxels, use a random forest classifier (RFC)

using scikit-learn to rank each voxel according to its

feature importance.
 

NOTE: Although the RFC did not perform above chance

by itself, it did serve the useful purpose of screening

out noninformative voxels, which would have contributed

only noise to the Ivis algorithm. This is similar to

using F-tests for feature selection before passing to

the classifier33 . Only the top 5% of voxels from the

training set were used in training and testing. The

https://www.jove.com
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preferred number of voxels was selected as 5% as a

conservative threshold in an effort to reduce the number

of noninformative voxels prior to training the neural net.

Qualitatively similar results were also obtained for both

humans and dogs when using a larger proportion of

voxels. Though human brains are larger than dog brains,

human models were also successful when trained on an

absolute number of voxels equal to those included in dog

models, far smaller than 5% of voxels (~250 voxels; all

mean LRAP scores >99th percentile). For consistency,

we, therefore, present the results using the top 5% of

voxels for both species.

11. Normalize the average 5% most informative voxels

across all 100 runs, transform to each participant's

structural space and then to group atlas space (atlases:

humans34  and dogs35 ), and sum it across participants

for each species. Overlay feature importance on the

atlases and color them according to importance score

using ITK-SNAP36 .

Representative Results

The most common metrics to assess model performance

in machine learning analyses include precision, accuracy,

recall, and F1 score. Accuracy is the overall percentage

of model predictions that are correct, given the true data.

Precision is the percentage of the model's positive predictions

that are actually positive (i.e., the true positive rate), while

recall is the percentage of true positives in the original data

that the model is able to successfully predict. F1 score is

the weighted average of precision and recall and acts as an

alternate measure of accuracy that is more robust to class

imbalance. However, the Ivis differs from other commonly

used machine learning algorithms in that its output is not

binary. Given a particular input of brain voxels, each output

element represents the probabilities corresponding to each

of the classes. Computing accuracy, precision, recall, and F1

for these outputs required binarizing them in a "winner takes

all" fashion, where the class with the highest probability was

considered the one predicted for that volume. This approach

eliminated important information about the ranking of these

probabilities that was relevant to assessing the quality of the

model. Thus, while we still computed these traditional metrics,

we used the Label Ranking Average Precision (LRAP) score

as the primary metric to compute the accuracy of the model on

the test set. This metric essentially measures to what extent

the classifier assigned higher probabilities to true labels37 .

To different degrees, the neural net classifier was successful

for both humans and dogs. For humans, the algorithm was

able to classify both objects and actions, with three-class

models for both achieving a mean accuracy of 70%. The

LRAP score was used as the primary metric to compute the

accuracy of the model on the test set; this metric measures

the extent to which the classifier assigned higher probabilities

to true labels37 . For both humans, the median LRAP scores

were greater than the 99th percentile of a randomly permuted

set of labels for all models tested (Table 1; Figure 2). For

dogs, only the action model had a median LRAP percentile

rank significantly greater than chance in both participants

(Table 1; p = 0.13 for objects and p < 0.001 for actions;

mean three-class action model LRAP score for dogs =

78th percentile). These results were true for all subjects

individually, as well as when grouped by species.

Given the classifier's success, we trained and tested with

additional classes to determine the limits of the model. This

included computing dissimilarity matrices for the entire 52

potential classes of interest using the Python package scipy's

hierarchical clustering algorithm, which clustered classes

https://www.jove.com
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based on the similarity of an individual's brain response to

each, as defined by pairwise correlation. Of the additional

models tested, the model with the highest median LRAP

percentile ranking in both dogs had five classes: the original

"talking", "eating", and "sniffing", plus two new classes,

"petting" and "playing" (Figure 2). This model had a median

LRAP percentile rank significantly greater than that predicted

by chance for all participants (Table 1; p < 0.001 for both dogs

and humans; mean five-class action model LRAP score for

dogs = 81st percentile).

When back-mapped to their respective brain atlases, the

feature importance scores of voxels revealed a number

of clusters of informative voxels in the occipital, parietal,

and temporal cortices of both dogs and humans (Figure

3). In humans, the object-based and action-based models

revealed a more focal pattern than in the dogs and in regions

typically associated with object recognition, although with

slight differences in the spatial location of object-based voxels

and action-based voxels.

We checked that these species differences were not a result

of the task-correlated motion of the dogs moving more to

some types of videos than others (e.g., videos other than

dogs, say, cars). We calculated the Euclidean norm of the

six motion parameters and fit a linear mixed-effects model

using the R package lme4, with class as a fixed effect and run

number as a random effect for each dog. For each of the final

models, we found no significant effect of class type on motion

for either Daisy (F(2, 2252) = 0.83, p = 0.44 for object-based

and F(4, 1235) = 1.87, p = 0.11 for action-based) or Bhubo

(F(2, 2231) = 1.71, p = 0.18 for object-based and F(4, 1221)

= 0.94, p = 0.45 for action-based).

 

Figure 1: Naturalistic videos and presentation in MRI bore. (A) Example frames from video clips shown to the

participants. (B) Bhubo, a 4-year-old Boxer-mix, watching videos while undergoing awake fMRI. Please click here to view a

larger version of this figure.
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Figure 2: Model performance in dogs and humans. The distribution of LRAP scores, presented as percentile rankings

of their null distributions, over 100 iterations of training and testing the Ivis machine learning algorithm for a three-class

object-based model, a three-class action-based model, and a five-class action-based model, where models attempted to

classify BOLD responses to naturalistic video stimuli obtained via awake fMRI in dogs and humans. Scores are aggregated

by species. An LRAP score with a very high percentile ranking indicates that the model would be very unlikely to achieve that

LRAP score by chance. A model performing no better than chance would have a median LRAP score percentile ranking of

~50. Dashed lines represent the median LRAP score percentile ranking for each species across all 100 runs. Please click

here to view a larger version of this figure.
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Figure 3: Regions important for the discrimination of three-class object and five-class action models. (A) Human and

(B) dog participants. Voxels were ranked according to their feature importance using a random forest classifier, averaged

across all iterations of the models. The top 5% of voxels (i.e., those used to train models) are presented here, aggregated

by species and transformed to group space for visualization purposes (atlases: humans34  and dogs35 ). Labels show dog

brain regions with high feature importance scores, based on those identified by Johnson et al.35 . Abbreviation: SSM = the

suprasylvian gyrus. Please click here to view a larger version of this figure.
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Model Type Training

Accuracy

Test

Accuracy

F1 Score Precision Recall LRAP score

median

percentile

Object

(3 class)

0.98 0.69 0.48 0.52 0.49 >99

Action

(3 class)

0.98 0.72 0.51 0.54 0.54 >99

Human 1

Action

(5 class)

0.97 0.51 0.28 0.37 0.27 >99

Object

(3 class)

0.98 0.68 0.45 0.5 0.47 >99

Action

(3 class)

0.98 0.69 0.46 0.5 0.48 >99

Human 2

Action

(5 class)

0.97 0.53 0.3 0.4 0.27 >99

Object

(3 class)

0.99 0.61 0.38 0.41 0.39 57

Action

(3 class)

0.98 0.63 0.38 0.4 0.4 87

Bhubo

Action

(5 class)

0.99 0.45 0.16 0.29 0.13 88

Object

(3 class)

1 0.61 0.38 0.43 0.39 43

Action

(3 class)

0.97 0.62 0.35 0.38 0.35 60

Daisy

Action

(5 class)

0.99 0.44 0.16 0.27 0.13 76

Table 1: Aggregated metrics of the Ivis machine learning algorithm over 100 iterations of training and testing on

BOLD responses to naturalistic video stimuli obtained via awake fMRI in dogs and humans. The object models had

three target classes ("dog", "human", "car"), and the action models had either three or five classes (three class: "talking",

https://www.jove.com
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"eating", "sniffing"; five class: "talking", "eating", "sniffing", "petting", "playing"). Values significantly greater than chance are

shown in bold.

Supplementary Table 1: Class labels. Please click here to

download this File.

Supplementary Movie 1: Sample video clip. Please click

here to download this File.

Discussion

The results of this study demonstrate that naturalistic videos

induce representations in dogs' brains that are stable enough

over multiple imaging sessions that they can be decoded

with fMRI-similar to results obtained in both humans and

monkeys20,23 . While previous fMRI studies of the canine

visual system have presented stripped-down stimuli, such as

a face or object against a neutral background, the results

here demonstrate that naturalistic videos, with multiple people

and objects interacting with each other, induce activation

patterns in the dog cortex that can be decoded with a reliability

approaching that seen in the human cortex. This approach

opens up new avenues of investigation for how the dog's

visual system is organized.

Although the field of canine fMRI has grown rapidly, to date,

these experiments have relied on relatively impoverished

stimuli, such as pictures of people or objects against neutral

backgrounds10,12 ,13 . Additionally, while these experiments

have begun to identify brain regions analogous to the primate

fusiform face area (FFA), involved in face processing, and

the lateral occipital cortex (LOC), for object processing,

there remains disagreement over the nature of these

representations, such as whether dogs have face areas

per se responding to similar salient features as primates

or whether they have separate representations for dogs

and humans or faces and heads, for example9,13 . Dogs,

of course, are not primates, and we do not know how

they interpret these artificial stimuli divorced from their

usual multisensory contexts with sounds and smells. Some

evidence suggests that dogs do not treat images of objects

as representations of real things12 . Although it is not possible

to create a true multisensory experience in the scanner,

the use of naturalistic videos may mitigate some of the

artificialness by providing dynamic stimuli that more closely

match the real world, at least to a dog. For the same reasons,

the use of naturalistic stimuli in human fMRI research

has gained popularity, demonstrating, for example, that

sequences of events in a movie are represented in the cortex

across multiple time scales and that movies are effective

at inducing reliable emotion activation38 . As such, while

naturalistic videos do remain relatively impoverished stimuli,

their success in human neuroscience begs the question of

whether similar results can be obtained in dogs.

Our results show that a neural net classifier was successful in

decoding some types of naturalistic content from dog brains.

This success is an impressive feat given the complexity of

the stimuli. Importantly, because the classifier was tested

on unseen video clips, the decoding model picked up broad

categories that were identifiable across clips rather than

properties specific to individual scenes. We should note

there are multiple metrics for quantifying the performance

of a machine learning classifier (Table 1). As naturalistic

videos, by their nature, will not have equal occurrences of

all classes, we took a prudent approach by constructing

a null distribution from the random permutation of labels

https://www.jove.com
https://www.jove.com/
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and assessing the significance referenced to that. Then, we

found that the success of the dog models was statistically

significant, achieving 75th-90th percentile scores, but only

when the videos were coded based on the actions present,

such as playing or talking.

The test sets, unlike the training sets, were not balanced

across classes. Comprising only 20% of the data,

undersampling to the smallest class size would have resulted

in very small sample sizes for each class, such that any

statistics calculated would have been unreliable. To avoid

the possibility of inflated accuracy from this imbalance, the

null distribution of the LRAP was computed by randomly

permuting the order of the classes 1,000 times for each model

iteration. This null distribution acted as a reference for how

well the model was likely to perform by chance. Then, the true

LRAP was then converted to a percentile ranking in this null

distribution. A very high percentile ranking, for example, 95%,

would indicate that a score that high arose only 5% of the time

in 1,000 random permutations. Such a model could, therefore,

be deemed to be performing well above chance. To determine

if these percentile rankings are significantly greater than that

expected by chance-that is, the 50th percentile-statistically,

the median LRAP percentile ranking across all 100 iterations

for each model was calculated and a one-sample Wilcoxon

signed rank test was performed.

Although the primary goal was to develop a decoder of

naturalistic visual stimuli for dogs, comparisons to humans

are unavoidable. Here, we note two major differences: for

each type of classifier, the human models performed better

than the dog models; and the human models performed

well for both object- and action-based models, while the

dog models performed for action-based only. The superior

performance of the human models could be due to several

factors. Human brains are roughly 10 times larger than dog

brains, so there are more voxels from which to choose to

build a classifier. To put the models on equal footing, one

should use the same number of voxels, but this could be

in either an absolute or relative sense. Although the final

model was based on the top 5% of informative voxels in

each brain (a relative measure), similar results were obtained

using a fixed number of voxels. Thus, it seems more likely

that performance differences are related to how humans and

dogs perceive video stimuli. As noted above, while dogs and

humans are both multisensory in their perception, the stimuli

may be more impoverished to a dog than a human. Size cues,

for example, may be lost, with everything appearing to be a

toy version of the real world. There is some evidence that

dogs categorize objects based on size and texture before

shape, which is almost opposite to humans39 . Additionally,

scent, not considered here, is likely an important source of

information for object discrimination in dogs, particularly in the

identification of conspecifics or humans40,41 ,42 . However,

even in the absence of size or scent cues, in the unusual

environment of the MRI scanner, the fact that the classifier

worked at all says that there was still information relevant

to the dogs that could be recovered from their brains. With

only two dogs and two humans, the species differences could

also be due to individual differences. The two dogs, however,

represented the best of the MRI-trained dogs and excelled at

holding still while watching videos. While a larger sample size

would certainly allow more reliable distinctions to be drawn

between species, the small number of dogs that are capable

of doing awake fMRI and who will watch videos for periods

long enough will always limit generalizability to all dogs. While

it is possible that specialized breeds, like sighthounds, might

have more finely tuned visual brain responses, we believe that

https://www.jove.com
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individual temperament and training are more likely to be the

major determinants of what is recoverable from a dog's brain.

These species differences raise the question of what aspect

of the videos the dogs were paying attention to. One approach

to answering this question relies on simpler video stimuli.

Then, by using isolated images of, say, humans, dogs,

and cars, both individually and together against neutral

backgrounds, we might be able to reverse engineer the salient

dimensions to a dog. However, this is both methodologically

inefficient and further impoverishes the stimuli from the

real world. The question of attention can be solved by

the decoding approach alone, in effect, using the model

performance to determine what is being attended to43 . Along

these lines, the results here suggest that, while the humans

attended to both the actors and the actions, the dogs were

more focused on the actions themselves. This might be

due to differences in low-level motion features, such as the

movement frequency when individuals are playing versus

eating, or it might be due to a categorical representation

of these activities at a higher level. The distribution of

informative voxels throughout the dog's cortex suggests that

these representations are not just low-level features that

would otherwise be confined to visual regions. Further study

using a wider variety of video stimuli may illuminate the role

of motion in category discrimination by dogs.

In summary, this study has demonstrated the feasibility of

recovering naturalistic visual information from the dog cortex

using fMRI in the same way that is done for the human cortex.

This demonstration shows that, even without sound or smells,

salient dimensions of complex scenes are encoded by dogs

watching videos and that these dimensions can be recovered

from their brains. Secondly, based on the small number of

dogs that can do this type of task, the information may be

more widely distributed in the cortex than typically seen in

humans, and the types of actions seem to be more easily

recovered than the identity of the actors or objects. These

results open up a new way of examining how dogs perceive

the environments they share with humans, including video

screens, and suggest rich avenues for future exploration of

how they and other non-primate animals "see" the world.
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