Summary

트렌스 제닉 생산 Xenopus laevis 제한 효소 중재 통합 및 핵 이식에 의해

Published: August 21, 2010
doi:

Summary

이 비디오 프로토콜은 유전자 변형을 생성하는 방법을 보여줍니다<em> Xenopus laevis</em> unfertilized 계란으로 핵 이식 뒤에 정자 핵에 transgenes의 소개로.

Abstract

Xenopus 게놈에 복제된 유전자 제품의 안정적인 통합은 배아 발달의 나중 단계에서 유전자를 표현하고, 그때와 발기인은 배아 내에서 유전자 발현을 조절하는 방법 정의, 표현의 시간과 장소를 제어하는 것이 필요합니다. 프로토콜 여기서 보여주는 효율적으로 유전자 변형 Xenopus laevis의 배아를 생산하는 데 사용할 수 있습니다. 1 :이 transgenesis 방식은 세 부분을 포함한다. 정자의 핵은 성인 X.으로부터 격리 아르 정자 플라즈마 막을 permeabilizes lysolecithin와 치료에 의해 ​​laevis의 testis. 2. 에그 추출물은 저속 원심 분리, 세포주기의 계면으로 진행하기 위해 추출을 일으킬뿐만 아니라 칼슘과 계면 cytosol를 분리하기 위해 고속 원심 분리에 의해 준비가되어 있습니다. 3. 핵 이식 : 핵 및 추출물은 transgene 및 제한 효소의 작은 금액으로 소개하는 선형 플라스미드 DNA와 결합하고 있습니다. 짧은 반응 동안, 달걀 추출물은 부분적으로 정자 염색질을 decondenses하고 제한 효소는 게놈에 transgene의 재조합을 촉진 염색체 휴식을 생성합니다. 취급 정자 핵은 다음 unfertilized 계란으로 이식하고 있습니다. transgene의 통합은 일반적으로 이전 결과 배아는 키메라하지 않는 등 처음 배아 절단을 발생합니다. 이 배아는 발기인 및 유전자 기능 분석을위한 유전자 변형 배아의 효과적이고 신속한 세대 수 있도록, 다음 세대 번식을 필요로하지 않고 분석할 수 있습니다. 성인 X. 이 절차로 인한 laevis 또한 germline 통해 transgene을 전파하고 여러 목적을 위해 유전자 변형 동물의 라인을 생성하는 데 사용할 수 있습니다.

Protocol

이 transgenesis 접근 방식의 수정된 버전은 초기에 1과 2에서 설명한되었습니다. A.의 정자 핵 준비 이 핵 준비 방법은 머레이 3에서 적응이지만, 그들이 정자 핵 이식과 계란의 후속 개발과 방해로 프로 테아제 억제제가 생략되었습니다. Aliquots는 -80 ° C에서 냉동하고 약 6 개월 동안 transplantations 사용할 수 있습니다. 모?…

Discussion

각 형질 구성을 테스트하기 위해서, 우리는 일반적으로 500-1000 계란으로 핵 이식,이 규모에서, 우리는 알을 낳기 위해 유도 얼마나 많은 암컷에 따라 하루에 10 가지 다른 구조까지 표현 형질 배아를 생성할 수 있습니다. 이러한 transplantations의 계란 클리브 중 하나에 대한 세 번째이 cleaving 배아의 60~80%가 정상적으로 gastrulation을 통해 진행합니다. 이 배아의 10-50% 사이에 사용하는 반응 조건에 따라?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

우리의 작업에 대한 자금은 NIH, 천의 월, 및 미국 암 협회에 의해 제공됩니다.

Materials

A.Sperm nuclei preparation

Reagents:

  1. 1X MMR (2mM CaCl2, 5mM HEPES, pH7.5, 2mM KCl, 1mM MgCl2, 100mM NaCl).
  2. 0.1% Tricaine Methanesulfonate (MS222, aminobenzoic acid ethyl ester, Sigma A-5040), 0.1% sodium bicarbonate. Dissolve in water.
  3. 2X Nuclear Preparation Butter (NPB). On the day of the sperm nuclei preparation, make up 30 ml of 2X NPB from aliquots of the stock solutions stored frozen: 500 mM sucrose (1.5 M stock), 30 mM HEPES (1M stock; titrate with KOH so that pH 7.7 is at 15 mM), 1 mM spermidine trihydrochloride (Sigma S-2501; 10 mM stock), 0.4 mM spermine tetrahydrochloride (Sigma S-1141; 10 mM stock), 2 mM dithiothreitol (Sigma D-0632; 100 mM stock), 2 mM EDTA (500 mM EDTA, pH 8.0).
  4. Use the 2XNPB to make a. 30ml 1X NPB, b. 10ml 1XNPB+3%BSA (fraction V, Sigma A-7906), c. 5ml 1XNPB+0.3%BSA.
  5. Lysolecithin: 100 μl of 10 mg/ml L-α-lyso-Lecithin, Egg Yolk (Calbiochem, 440154); dissolve at room temperature just before use. Store solid stock at 20°C. Discard the stock powder if it becomes sticky.
  6. Bovine serum albumin (BSA): 10% (w/v) BSA (fraction V, Sigma A-7906) Make up 5 ml in water on the day of the sperm nuclei preparation.
  7. Sperm storage buffer (1ml) 1X NPB, 30% glycerol, 0.3% BSA.
  8. Sperm dilution buffer: 250 mM sucrose, 75 mM KCl, 0.5 mM spermidine trihydrochloride, 0.2 mM spermine tetrahydrochloride. Titrate to pH 7.3-7.5 and store 0.5-1 ml aliquots at 20°C.
  9. Hoechst No. 33342 (Sigma B-2261): 10 mg/ml stock in dH2O, store in a light tight vessel at 20°C.

Equipment:

  • Swinging bucket rotor and centrifuge
  • cheesecloth
  • dissection tools (forceps and scissors)
  • fluorescence microscope
  • funnel
  • gloves
  • hemocytometer
  • needles (26 gauge)
  • paper towels
  • petri dishes (60 mm)
  • pipettes
  • plastic (5 and 10 ml)
  • Pipetman tips (1 ml and 200μl)
  • Syringes (1 ml)
  • tubes (14 ml; Falcon, 2059)
  • tubes
  • microcentrifuge (1.5 ml)

B. Preparation of High Speed Extract

Reagents:

  1. 1X Marc’s Modified Ringer (MMR): 100 mM NaCl, 2 mM KCl, 1 mM MgCl2, 2 mM CaCl2, 5 mM HEPES, pH 7.5. Prepare a 10X stock, and adjust pH with NaOH to 7.5.
  2. 20X Extract buffer (XB) salt stock: 2 M KCl, 20 mM MgCl2, 2 mM CaCl2, filter-sterilize and store at 4°C.
  3. Extract buffer (XB; freshly prepared and stored on ice): 1X XB salts, 50 mM sucrose,10mM HEPES (1 M stock, titrated with KOH so that pH is 7.7 when diluted to 15 mM; filter-sterilize, and store in aliquots at 20°C). Prepare about 100 ml.
  4. 2% (w/v) L-Cysteine hydrochloride 1-hydrate: Made up in 1X XB salts before use and titrated to pH 7.8 with NaOH. Prepare about 300 ml.
  5. CSF-XB: 1X XB salts, 1 mM MgCl2 (in addition to MgCl2 present in XB salts; final concentration 2 mM), 10 mM HEPES, pH 7.7, 50 mM sucrose, 5 mM EGTA, pH 7.7. Prepare 50 ml.
  6. Protease inhibitors: Mixture of leupeptin, chymostatin, and pepstatin, each dissolved to a final concentration of 10 mg/ml in dimethyl sulfoxide (DMSO). Store in small aliquots at 20°C.
  7. 1 M CaCl2.
  8. Energy mix: 150 mM creatine phosphate, 20 mM ATP, 20 mM MgCl2.
  9. Pregnant Mare Serum Gonadotropin (PMSG): 100 U/ml PMSG (P.G.600®, Intervet, Inc., 021825). Dissolve in water and stored at 20°C.
  10. Human Chorionic Gonadotropin (HCG): 1000 U/ml HCG (CHORULON®, Intervet, Inc., 057176 ). Dissolve in water and stored at 4°C.

Equipment:

  • Xenopus laevis females
  • Needles (18 and 26 gauge)
  • Pasteur pipette
  • wide bore
  • Syringes (1 mL)
  • Tubes, microcentrifuge (0.5 mL)
  • Tubes, thick-wall polycarbonate (Beckman, 349622)
  • Tubes, ultraclear (14 x 95 mm; Beckman, 344060)
  • Ultracentrifuge and rotors (e.g., Beckman TL-100 with rotors SW 40 Ti and TLA-100.3)
  • Beakers for egg collection
  • Buckets or containers for holding female frogs (e.g., 4-L plastic beakers with mesh lids).

C. Nuclear transplantation.

Reagents:

  1. 2.5% agarose in 0.1XMMR (for making injection dishes)
  2. 2.5% Cysteine in 1XMMR, pH8.0, prepared on the day of use
  3. Ficoll
  4. 10 mg/ml gentamycin (1000X stock)
  5. high speed egg extract (see above)
  6. 100 MgCl2
  7. 10X MMR (see above)
  8. Restriction enzyme (e.g. NotI from New England Biolabs)
  9. Sperm dilution buffer (SDB; see above) and sperm nuclei (see above)
  10. Human Chorionic Gonadotropin (HCG) as above
  11. mineral oil (Sigma, M8410)
  12. Linearized plasmid to be introduced as the transgene: Prepare linearized plasmid at a concentration of about 100 ng/μl in sterile, nuclease-free water (we avoid Tris and EDTA-containing buffers, which are somewhat toxic to embryos). The restriction enzyme used to linearize the plasmid does not have to be the same as the one used in the nuclear transfer reaction. We usually use NotI for all reactions, regardless of what plasmid is linearized with. Some calibration of the enzyme dilution used in the reaction may be necessary, as too much enzyme can cause adverse effects on post-gastrula development. Plasmid can be purified in several different ways: we usually use the Qiagen Qiaquick PCR purification kit according to the manufacturers directions; purification of a single band from a gel is not necessary. If plasmid is purified using phenol/chloroform extractions and ethanol precipitation, be certain to remove all traces of organics and ethanol.

Equipment:

Agarose dishes for injection: In a 60 mm plastic petri dish, lay a small 35mmX35mm weigh boat on molten 2.5% agarose in water 0.1XMMR to create a depression with an agarose-coated bottom for filling with eggs. Once agarose has hardened, wrap in parafilm and store at 4°C until use. Make 2-3 dishes in advance for each transgenic reaction you plan to do.

Infusion pump: We use a single syringe infusion pump from Harvard Apparatus, equipped with a 3 cc syringe/needle filled with mineral oil (Sigma M-8410). Blunt the syringe needle tip (to keep it from perforating the tubing) and attach the fine tygon tubing. Run the pump at ~10nl/sec; this assumes that the time the needle is in each egg will be no greater than 1 sec. Pump should be pre-run for several minutes prior to starting transgenesis for the day to assure that the plunger for the syringe is flush with the piston and that steady positive flow of oil out of the tubing is occurring.

Needles for nuclear transfers. Using a micropipette puller, generate needles with long, sloping tips. Clip these with a forcep under a dissecting microscope equipped with an ocular micrometer to obtain an ~80 micron opening with a beveled shape.

Other equipment: Xenopus laevis females, stereomicroscope, incubator, micromanipulator, microinjection needle puller (e.g. Model P-87, Sutter), syringe needles (26 gauge), glass microinjection needles, ocular micrometer for calibrated clipping of microinjection needle tips to 80μm diameter, petri dishes, weigh boats 35mm, Tygon tubing (ID=1/32 in., OD=3/32 in.)

References

  1. Kroll, K. L., Amaya, E. Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development. 122, 3173-3183 (1996).
  2. Amaya, E., Kroll, K. L. A method for generating transgenic frog embryos. Methods Mol Biol. 97, 393-414 (1999).
  3. Murray, A. W. Cell cycle extracts. Methods Cell Biol. 36, 581-605 (1991).
  4. Hartley, K. O., Hardcastle, Z., Friday, R. V., Amaya, E., Papalopulu, N. Transgenic Xenopus embryos reveal that anterior neural development requires continued suppression of BMP signaling after gastrulation. 발생학. 238, 168-184 (2001).
  5. Karaulanov, E., Knöchel, W., Niehrs, C. Transcriptional regulation of BMP4 synexpression in transgenic Xenopus. EMBO J. 23, 844-856 (2004).
  6. Ogino, H., Fisher, M., Grainger, R. M. Convergence of a head-field selector Otx2 and Notch signaling: a mechanism for lens specification. Development. 135, 249-2458 (2008).
  7. Taylor, J. J., Wang, T., Kroll, K. L. Tcf- and Vent-binding sites regulate neural-specific geminin expression in the gastrula embryo. 발생학. 289, 494-506 (2006).
  8. Marsh-Armstrong, N., Huang, H., Berry, D. L., Brown, D. D. Germ-line transmission of transgenes in Xenopus laevis. Proceedings of the National Academy of Sciences of the United States of America. 96, 14389-14393 (1999).
  9. Offield, M. F., Hirsch, N., Grainger, R. M. The development of Xenopus tropicalis transgenic lines and their use in studying lens developmental timing in living embryos. Development. 127, 1789-1797 (2000).
check_url/kr/2010?article_type=t

Play Video

Cite This Article
Amaya, E., Kroll, K. Production of Transgenic Xenopus laevis by Restriction Enzyme Mediated Integration and Nuclear Transplantation. J. Vis. Exp. (42), e2010, doi:10.3791/2010 (2010).

View Video