Summary

Subcutane Infectie van Methicilline Resistente Staphylococcus Aureus (MRSA)

Published: February 09, 2011
doi:

Summary

Murine skin and soft tissue infection model is utilized for assessing the virulence function of methicillin resistant Staphylococcus aureus (MRSA) and the host immunological responses. Here, we presented a subcutaneous infection model for skin and soft tissue infection.

Abstract

MRSA is a worldwide threat to public health, and MRSA skin and soft-tissue infections now account for more than half of all soft-tissue infections in the United States. Among soft-tissue infections, myositis, pyomyositis, and necrotizing fasciitis have been increasingly reported in association with MRSA arising from the community. To understand the interplay between MRSA and host immunity leading to more severe infection, the availability of animal models is critical, permitting the study of host and bacterial factors. Several infection models have been introduced to assess the pathogenesis of S. aureus during superficial skin infection. Here, we describe a subcutaneous infection model that examines the skin, subcutaneous, and muscle pathologies.

Protocol

1. Preparing the MRSA for Infection (two Days Prior to Infection) Inoculate a loopful of MRSA from a stock culture to a blood agar (Trypticase Soy Agar (TSA)) plate. Check the hemolysis phenotype (a clear zone around each colony) on the blood agar plate. Pick a colony that has a hemolytic phenotype that is consistent with other experiments. Inoculate the colony into 3 mL Todd Hewitt Broth (THB),with the appropriated antibiotic when necessary, in a 15 mL snap-capped tube….

Discussion

  1. The murine skin and soft tissue infection model is a powerful tool for in vivo virulence assessment of a pathogen. The pathogenicity of S. aureus in skin and soft tissue infection may vary depending on a number of parameters. These include inoculum size, bacterial growth phase, depth of inoculation, age of mice, and the mouse genetic background 7, 8. When examining the virulence function using this model, it is critical to control for these parameters to ensure that results will be consistent. We have …

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by a Burroughs-Wellcome Career Award and by National Institutes of Health grant AI074832 to G. Y. Liu.

Materials

Material Name Type Company Catalogue Number Comment
THB   VWR 95025-314  
DPBS   Invitrogen 21-031-CV  
1 ml syringe   BD 309602  
27G1/2 needle   BD 305109  
Sheep Blood Agar (TSA)   VWR 90004-328  

References

  1. Ahn, J. Y., Song, J. Y., Yun, Y. S., Jeong, G., Choi, I. S. Protection of Staphylococcus aureus-infected septic mice by suppression of early acute inflammation and enhanced antimicrobial activity by ginsan. FEMS Immunol Med Microbiol. 46, 187-197 (2006).
  2. Girish, V., Vijayalakshmi, A. Affordable image analysis using NIH Image/ImageJ. Indian J Cancer. 41, 47-47 (2004).
  3. Hahn, B. L., Onunkwo, C. C., Watts, C. J., Sohnle, P. G. Systemic dissemination and cutaneous damage in a mouse model of staphylococcal skin infections. Microb Pathog. 47, 16-23 (2009).
  4. Hruz, P., Zinkernagel, A. S., Jenikova, G., Botwin, G. J., Hugot, J. P., Karin, M., Nizet, V., Eckmann, L. NOD2 contributes to cutaneous defense against Staphylococcus aureus through alpha-toxin-dependent innate immune activation. Proc Natl Acad Sci U S A. 106, 12873-12878 (2009).
  5. Ji, Y., Zhang, B., Van, S. F., Horn, P. W. a. r. r. e. n., Woodnutt, G., Burnham, M. K., Rosenberg, M. Identification of critical staphylococcal genes using conditional phenotypes generated by antisense RNA. Science. 293, 2266-2269 (2001).
  6. Somerville, G. A., Beres, S. B., Fitzgerald, J. R., DeLeo, F. R., Cole, R. L., Hoff, J. S., Musser, J. M. In vitro serial passage of Staphylococcus aureus: changes in physiology, virulence factor production, and agr nucleotide sequence. J Bacteriol. 184, 1430-1437 (2002).
  7. Tseng, C. W., Kyme, P., Low, J., Rocha, M. A., Alsabeh, R., Miller, L. G., Otto, M., Arditi, M., Diep, B. A., Nizet, V., Doherty, T. M., Beenhouwer, D. O., Liu, G. Y. Staphylococcus aureus Panton-Valentine leukocidin contributes to inflammation and muscle tissue injury. PLoS One. 4, e6387-e6387 (2009).
  8. von Kockritz-Blickwede, M., Rohde, M., Oehmcke, S., Miller, L. S., Cheung, A. L., Herwald, H., Foster, S., Medina, E. Immunological mechanisms underlying the genetic predisposition to severe Staphylococcus aureus infection in the mouse model. Am J Pathol. 173, 1657-1668 (2008).
check_url/kr/2528?article_type=t

Play Video

Cite This Article
Tseng, C. W., Sanchez-Martinez, M., Arruda, A., Liu, G. Y. Subcutaneous Infection of Methicillin Resistant Staphylococcus Aureus (MRSA). J. Vis. Exp. (48), e2528, doi:10.3791/2528 (2011).

View Video