Summary

शारीरिक, आंदोलन द्वारा संग्राहक न्यूरॉन्स के morphological और neurochemical विशेषता

Published: April 21, 2011
doi:

Summary

आंदोलन के दौरान स्तनधारी न्यूरॉन्स के vivo शारीरिक प्रतिक्रिया में यों और neuronal आकारिकी, neurochemical phenotype और synaptic microcircuitry के साथ न्यूरॉन के शरीर क्रिया विज्ञान सहसंबंधी एक तकनीक वर्णित है.

Abstract

The role of individual neurons and their function in neuronal circuits is fundamental to understanding the neuronal mechanisms of sensory and motor functions. Most investigations of sensorimotor mechanisms rely on either examination of neurons while an animal is static1,2 or record extracellular neuronal activity during a movement.3,4 While these studies have provided the fundamental background for sensorimotor function, they either do not evaluate functional information which occurs during a movement or are limited in their ability to fully characterize the anatomy, physiology and neurochemical phenotype of the neuron. A technique is shown here which allows extensive characterization of individual neurons during an in vivo movement. This technique can be used not only to study primary afferent neurons but also to characterize motoneurons and sensorimotor interneurons. Initially the response of a single neuron is recorded using electrophysiological methods during various movements of the mandible followed by determination of the receptive field for the neuron. A neuronal tracer is then intracellularly injected into the neuron and the brain is processed so that the neuron can be visualized with light, electron or confocal microscopy (Fig. 1). The detailed morphology of the characterized neuron is then reconstructed so that neuronal morphology can be correlated with the physiological response of the neuron (Figs. 2,3). In this communication important key details and tips for successful implementation of this technique are provided. Valuable additional information can be determined for the neuron under study by combining this method with other techniques. Retrograde neuronal labeling can be used to determine neurons with which the labeled neuron synapses; thus allowing detailed determination of neuronal circuitry. Immunocytochemistry can be combined with this method to examine neurotransmitters within the labeled neuron and to determine the chemical phenotypes of neurons with which the labeled neuron synapses. The labeled neuron can also be processed for electron microscopy to determine the ultrastructural features and microcircuitry of the labeled neuron. Overall this technique is a powerful method to thoroughly characterize neurons during in vivo movement thus allowing substantial insight into the role of the neuron in sensorimotor function.

Protocol

1. पशु तैयारी Pentobarbital सोडियम (50mg/kg आईपी) और एक हीटिंग पैड पर जगह के साथ चूहे anesthetize. जानवरों की क़ैंची के साथ पीछे खोपड़ी overlying त्वचा दाढ़ी. विश्वास दिलाता हूं कि संज्ञाहरण के स्तर के एक शल्य चिकित्सा स्तर एक व?…

Discussion

यहाँ सचित्र विधि एक शक्तिशाली तकनीक है जो एकल न्यूरॉन्स के समारोह में महत्वपूर्ण अंतर्दृष्टि प्रदान करता है और कैसे व्यक्तिगत न्यूरॉन्स की प्रतिक्रिया neuronal सर्किट के लिए योगदान देता है 9 यह ज्ञान …

Disclosures

The authors have nothing to disclose.

Acknowledgements

मैं एंथोनी टेलर vivo intracellular रिकॉर्डिंग और intracellular धुंधला तकनीक के प्रारंभिक विकास के साथ मदद के लिए ब्राउन और दाऊद मैक्सवेल में प्रारंभिक प्रशिक्षण के लिए धन्यवाद. मैं एम. रजत collocalization मैक्रो के साथ मदद के लिए धन्यवाद. किसके साथ कई विद्वानों मैं इस तकनीक के विकास सहित, एम. आर. डोंगा Moritani, पी. लुओ, आर Ambalavanar में अंतर्दृष्टि प्रदान की सहयोग किया है. एनआईएच DE10132 अनुदान, DE15386 और RR017971 से काफी समर्थन के साथ इस तकनीक को विकसित किया गया था.

Materials

Name of reagent or equipment Company Catalogue number Comments
electromagnetic vibrator Ling Dynamic Systems V101  
signal generator Feedback Systems PFG605 capable of producing trapezoidal output signal
electrode glass Sutter Instruments AF100-68-10 with filament
electrode puller Sutter Instruments Model P-2000 or P-80  
biotinamide Vector Laboratories SP-1120 stored at 4°C
Texas Red avidin DCS Vector Laboratories A-2016  
tetramethlyrhodamine Molecular Probes D-3308 3000 molecular weight, lysine fixable
mouse anti-synaptophysin antibody Chemicon MAB5258  
fluorescent Nissl stain Neurotrace, Molecular Probes N-21480  
electrode tester Winston Electronics BL-1000-B to measure electrode impedance
electrometer Axon Instruments Axoprobe 1A, Axoclamp 2B  

References

  1. Cuellar, C. A., Tapia, J. A., Juarez, V., Quevedo, J., Linares, P., Marinez, L., Manjarrez, E. Propagation of sinusoidal electrical waves along the spinal cord during a fictive motor task. J. Neurosci. 29, 798-810 (2010).
  2. Frigon, A., Gossard, J. Evidence for specialized rhythm-generating mechanisms in the adult mammalian spinal cord. J. Neurosci. 30, 7061-7071 (2010).
  3. Wang, W., Chan, S. S., Heldman, D. A., Moran, D. W. Motor cortical representation of hand translation and rotation during reaching. J. Neurosci. 30, 958-962 (2010).
  4. Ma, C., He, J. A method for investigating cortical control of stand and squat in conscious behavioral monkeys. J. Neurosci. Meth. 192, 1-6 (2010).
  5. Dessem, D., Donga, R., Luo, P. Primary- and secondary-like jaw-muscle spindle afferents have characteristic topographic distributions. J. Neurophysiol. 77, 2925-2944 (1997).
  6. Dessem, D., Moritaini, A., Ambalavanar, R. Nociceptive craniofacial muscle primary afferent neurons synapse in both the rostral and caudal brain stem. J. Neurophysiol. 98, 214-223 (2007).
  7. Luo, P., Dessem, D. Inputs from identified jaw-muscle spindle afferents to trigeminothalamic neurons in the rat: a double-labeling study using retrograde HRP and intracellular. J. Comp. Neurol. 353, 50-66 (1995).
  8. Dessem, D., Luo, P. Jaw-muscle spindle afferent feedback to the cervical spinal cord in the rat. J. Comp. Neurol. 128, 451-459 (1999).
  9. Luo, P., Wong, R., Dessem, D. Projection of jaw-muscle spindle afferents to the caudal brainstem in rats demonstrated using intracellular biotinamide. J. Comp. Neurol. 358, 63-78 (1995).
  10. Luo, P., Dessem, D. Ultrastructural anatomy of physiologically identified jaw-muscle spindle afferent terminations onto retrogradely labeled jaw-elevator motoneurons in the rat. J. Comp. Neurol. 406, 384-401 (1999).
  11. Hassani, O. K., Henny, P., Lee, M. G., Jones, B. E. GABAergic neurons intermingled with orexin and MCH neurons in the lateral hypothalamus discharge maximally during sleep. Eur. J. Neurosci. 32, 448-457 (2010).
  12. Inokawa, H., Yamada, H., Matsumoto, N., Muranishi, M., Kimura, M. Juxtacellular labeling of tonically active neurons and phasically active neurons in the rat striatum. 신경과학. 168, 395-404 (2010).
check_url/kr/2650?article_type=t

Play Video

Cite This Article
Dessem, D. Physiological, Morphological and Neurochemical Characterization of Neurons Modulated by Movement. J. Vis. Exp. (50), e2650, doi:10.3791/2650 (2011).

View Video