Summary

स्कोप का उपयोग करने के लिए Coregulated जीन में संभावित विनियामक रूपांकनों को पहचानें

Published: May 31, 2011
doi:

Summary

एक सीधे आगे और मजबूत करने के लिए सह विनियमित जीन में संभावित विनियामक रूपांकनों की पहचान विधि प्रस्तुत किया है. स्कोप किसी भी उपयोगकर्ता मापदंडों और रिटर्न रूपांकनों है कि नियामक संकेतों के लिए उत्कृष्ट उम्मीदवारों का प्रतिनिधित्व की आवश्यकता नहीं है. ऐसी नियामक संकेतों की पहचान करने के लिए अंतर्निहित जीव विज्ञान को समझने में मदद करता है.

Abstract

SCOPE is an ensemble motif finder that uses three component algorithms in parallel to identify potential regulatory motifs by over-representation and motif position preference1. Each component algorithm is optimized to find a different kind of motif. By taking the best of these three approaches, SCOPE performs better than any single algorithm, even in the presence of noisy data1. In this article, we utilize a web version of SCOPE2 to examine genes that are involved in telomere maintenance. SCOPE has been incorporated into at least two other motif finding programs3,4 and has been used in other studies5-8.

The three algorithms that comprise SCOPE are BEAM9, which finds non-degenerate motifs (ACCGGT), PRISM10, which finds degenerate motifs (ASCGWT), and SPACER11, which finds longer bipartite motifs (ACCnnnnnnnnGGT). These three algorithms have been optimized to find their corresponding type of motif. Together, they allow SCOPE to perform extremely well.

Once a gene set has been analyzed and candidate motifs identified, SCOPE can look for other genes that contain the motif which, when added to the original set, will improve the motif score. This can occur through over-representation or motif position preference. Working with partial gene sets that have biologically verified transcription factor binding sites, SCOPE was able to identify most of the rest of the genes also regulated by the given transcription factor.

Output from SCOPE shows candidate motifs, their significance, and other information both as a table and as a graphical motif map. FAQs and video tutorials are available at the SCOPE web site which also includes a “Sample Search” button that allows the user to perform a trial run.

Scope has a very friendly user interface that enables novice users to access the algorithm’s full power without having to become an expert in the bioinformatics of motif finding. As input, SCOPE can take a list of genes, or FASTA sequences. These can be entered in browser text fields, or read from a file. The output from SCOPE contains a list of all identified motifs with their scores, number of occurrences, fraction of genes containing the motif, and the algorithm used to identify the motif. For each motif, result details include a consensus representation of the motif, a sequence logo, a position weight matrix, and a list of instances for every motif occurrence (with exact positions and “strand” indicated). Results are returned in a browser window and also optionally by email. Previous papers describe the SCOPE algorithms in detail1,2,9-11.

Protocol

<p class="jove_title"> 1. जीन है कि आपको लगता है कि सह स्कोप द्वारा विश्लेषण के लिए विनियमित रहे हैं के लिए नामों की एक सूची तैयार करें.</p><p class="jove_content"> एक पाठ फ़ाइल के रूप में सहेजें सूची या क्लिपबोर्ड पर प्रतिलिपि करने के लिए चरण 3 में स्कोप में चिपकाएँ. फ़ाइल प्रति एक पंक्ति कोई अतिरिक्त जानकारी के साथ जीन नाम शामिल करना चाहिए. वैकल्पिक रूप से, आप एक FASTA वास्तविक दृश्यों का विश्लेषण किया जा करने वाली फ़ाइल के रूप में सूची तैयार कर सकते हैं.</p><p class="jove_title"> 2. अपने वेब ब्राउज़र प्रारंभ करें और URL से कनेक्ट:<a href="http://genie.dartmouth.edu/SCOPE/"> Http://genie.dartmouth.edu/SCOPE/</a</p><p class="jove_title"> 3. जानकारी है कि स्कोप के विश्लेषण प्रदर्शन करने के लिए की जरूरत दर्ज करें.</p><p class="jove_content"> प्रारंभिक स्कोप पृष्ठ चित्र 1 में दिखाया गया है. विभिन्न वर्गों इस चरण में संबोधित कर रहे हैं.</p><ol><li> 'प्रजाति' पॉपअप मेनू का प्रयोग करें प्रजातियों आप जांच हो जाएगा चुनने. यह महत्वपूर्ण है क्योंकि स्कोप जीनोम को संदर्भित करता है के लिए यह जांच कर रही है किसी भी उम्मीदवार आकृति के लिए घटना की पृष्ठभूमि आवृत्तियों की गणना सही प्रजातियों का चयन.</li><li> 'अपस्ट्रीम अनुक्रम "रेडियो बटन का प्रयोग करें या तो intergenic या निश्चित लंबाई का चयन Intergenic जीन आप देख रहे हैं और पिछले जीन (अपस्ट्रीम) के बीच सभी अनुक्रम का विश्लेषण करेगा. इसका मतलब यह होगा कि अलग अपस्ट्रीम लंबाई के लिए इस्तेमाल किया जाएगा प्रत्येक जीन तय की लंबाई का चयन बिल्कुल कि वर्तमान जीन की शुरू से अपस्ट्रीम nucleotides के नंबर पर देखो इस मामले में, स्कोप प्रत्येक जीन के लिए अपस्ट्रीम अनुक्रम का एक ही लंबाई की जांच करेंगे. जाएगा, भले ही है कि पिछले (या जीन में फैली आमतौर पर, 800 एनटीएस सबसे अच्छा लंबाई के लिए चुन है, लेकिन इस प्रजाति के साथ भिन्न हो सकते हैं.) नहीं है.</li><li> अगला स्कोप बताओ जीन क्या जीन सूची पाठ बॉक्स में अपने जीन सूची में चिपकाने के द्वारा, या 'फ़ाइल चुन' बटन दबाने जीन जिसे आपने पहले बनाया की सूची वाली फ़ाइल का चयन करने के लिए या तो विश्लेषण सेट. आप वैकल्पिक रूप से, एक ही पाठ बॉक्स में एक FASTA अनुक्रम फ़ाइल में चिपका सकते हैं.</li><li> पृष्ठ के अगले अनुभाग के लिए एक चेकबॉक्स होता है 'अन्य पाया आकृति (ओं) जिसमें जीनों के लिए जीनोम जांच?' यह विकल्प काफी विश्लेषण समय जोड़ने के बाद स्कोप जीनोम में हर दूसरे जीन का मूल्यांकन कर सकते हैं. हालांकि, यह अन्य जीन है कि अच्छे उम्मीदवारों के लिए किया जा रहा शुरू जीन सेट में जीन के साथ सह विनियमित रहे हैं की पहचान करने में बहुत उपयोगी हो सकता है. चूंकि स्कोप विश्लेषण अपेक्षाकृत जल्दी कर रहे हैं, यह सुझाव दिया है कि आप अपने प्रारंभिक विश्लेषण में इस बंद को छोड़. यह हमेशा परिणाम पृष्ठ से कर सकते हैं दिया जा विश्लेषण फिर से दौड़ना, के रूप में परिणाम अनुभाग में समझाया.</li><li> 'परिणाम शामिल करना चाहिए अनुभाग के लिए एक आकृति दर्ज करें कि आप अपने विश्लेषण में शामिल करने के लिए स्कोप चाहते हैं के लिए इस्तेमाल किया जा सकता है. आप ऐसा करना चाहते हैं यदि आप एक विशिष्ट आकृति के लिए देख रहे हैं हो सकता है.</li><li> पृष्ठ पर अंतिम अनुभाग के लिए अपने ईमेल पते और एक विश्लेषण के साथ सहेजा जा टिप्पणी दर्ज करने के लिए इस्तेमाल किया जा सकता है. यदि इस में भरा है, स्कोप वेब परिणाम वाले पृष्ठ के लिए एक वापस लिंक के साथ एक ईमेल भेजने के लिए, और यह भी दो संलग्नक शामिल होंगे. एक एक सादा पाठ फाइल है कि सभी मानव पठनीय प्रारूप में विश्लेषण परिणाम है. दूसरे अनुलग्नक एक XML फ़ाइल है कि हर नतीजा है कि स्कोप एक कंप्यूटर पठनीय प्रारूप में पाया गया है है शामिल हैं. यदि आप परिणामों पर कुछ अतिरिक्त विश्लेषण करना चाहते हैं, XML फ़ाइल बहुत उपयोगी है. दोनों फ़ाइलों को ईमेल के साथ भेजा जा रहा से पहले कर रहे हैं "ज़िपित".</li><li> इस डेमो के लिए, हम एक ही जानकारी के साथ शुरू होगा. यह आसानी से 'नमूना खोज' बटन जो आवश्यक जानकारी में भरें दबाकर प्राप्त किया जा सकता है. अब इस बटन दबाएँ. तीन जीन आप और अन्य क्षेत्रों के लिए उपयुक्त बनाया विकल्प के लिए दर्ज किया जाएगा. छोड़ो इन के रूप में वे स्थापित कर रहे हैं. तीन जीनों में telomere रखरखाव में शामिल हैं<em> Saccharomyces cerevisiae</em>. फार्म में भरा चित्रा 2 में दिखाया गया है. पृष्ठ के तल पर 'भागो स्कोप' बटन प्रेस विश्लेषण शुरू.</li></ol><p class="jove_title"> 4. प्रतिनिधि परिणाम:</p><p class="jove_content"> विश्लेषण के मुख्य परिणाम 3 चित्र में दिखाया जाता है. पृष्ठ के शीर्ष रूपांकनों कि स्कोप द्वारा पाया गया के बारे में जानकारी की एक तालिका शामिल हैं. प्रथम स्तंभ रूपांकनों पाया गया और छोटे रंग का वर्गों आलेखीय आकृति नक्शा नीचे दिखाया के लिए एक किंवदंती के रूप में सेवा की एक सूची शामिल हैं. रंग बॉक्स (या जहां रंगीन बॉक्स होगा) में क्लिक करके किसी भी आकृति का प्रदर्शन या बंद toggled जा सकता है है. यह बहुत उपयोगी हो सकता है अत्यधिक दोहराया रूपांकनों है कि यह कम प्रचलित आकृति पैटर्न को देखने के लिए मुश्किल बना सकता है के प्रदर्शन को छिपाने कर सकते हैं.</p><p class="jove_content"> अन्य स्तंभों का डेटा की गणना (पूरा जीन सेट में है कि आकृति की घटनाओं की संख्या), हस्ताक्षर मूल्य (उस आकृति के महत्व का एक संकेत), कवरेज (पेश जीन है कि कम से कम एक का उदाहरण होते का प्रतिशत कि), आकृति, और एल्गोरिथ्म (जो तीन घटक एल्गोरिदम करने के लिए आकृति का पता लगाने के लिए इस्तेमाल किया गया था).</p><p class="jove_content"> सूचीबद्ध रूपांकनों के किसी भी पर क्लिक कि आकृति के लिए विस्तृत जानकारी युक्त पृष्ठ पर उपयोगकर्ता को ले जाएगा. परिणाम विवरण सियान आकृति (atgnnnnttg) चित्रा 4 में दिखाया के लिए कर रहे हैं. एक दृश्य लोगो, एक स्थिति का वजन मैट्रिक्स, और अपनी स्थिति, किस्में, और जीन के साथ सभी आकृति उदाहरणों की एक सूची है: इस पृष्ठ पर, आकृति तीन तरीकों में प्रतिनिधित्व किया है.</p><p class="jove_content"एक पृष्ठ नीचे थोड़ा आगे इस आकृति वाले अन्य जीन के लिए देख रहे हैं के परिणामों के बारे में कुछ अतिरिक्त जानकारी कर रहे हैं. के रूप में देखा जा सकता है, इस मामले में 1344 अन्य आकृति, जो सभी के वास्तव में हस्ताक्षर मूल्य में सुधार जब मूल जीन सेट करने के लिए जोड़ा युक्त जीन थे. दबाने से 'खोज' स्कोप सेटअप पृष्ठ पर इन जीनों के साथ वापस आ जाएगी जाँच जीन जोड़ें मूल जीन सेट करने के लिए जोड़ा और पैरामीटर सेट के रूप में वे पहले थे. इस मामले में, 10 अतिरिक्त जीन मूल तीन जोड़े जाते हैं.</p><p class="jove_content"> चित्रा 5 इस आकृति के लिए अतिरिक्त जीन युक्त विश्लेषण के परिणामों से पता चलता है. मूल तीन जीनों परिणामों के तल पर (कम मामले में). इन अतिरिक्त जीन के अपस्ट्रीम क्षेत्र में रूपांकनों के पैटर्न को देखते हुए स्पष्ट रूप से पता चलता है कि वे समान हैं. वास्तव में, इन जीनों के कई telomere रखरखाव में शामिल कर रहे हैं के रूप में मूल तीन जीनों थे. यह भी ध्यान दें कि मूल आकृति अब इस सेट में उच्चतम स्कोरिंग आकृति है.</p><p class="jove_content"स्कोप परिणामों के एक अन्य सेट 6 चित्र में दिखाया गया है. इस मामले में, जीन सेट Saccharomyces cerevisiae में ribosome biogenesis में शामिल कर रहे हैं उन है कि कर रहे हैं. इन जीनों वास्तव ribosome का हिस्सा नहीं हैं लेकिन ribosomes कोडांतरण के लिए जिम्मेदार हैं और संशोधन एंजाइमों के एक नंबर शामिल हैं. आंकड़ा में स्पष्ट है क्या है कि लाल और हरे रंग रूपांकनों एक विश्वसनीय पैटर्न है कि इस सेट में जीनों के विनियमन में शामिल होने की संभावना है के रूप में. हम और अधिक विस्तार में "मॉड्यूल" के इस पैटर्न की जांच कर रहे हैं और बाद में एक प्रकाशन में इस पर रिपोर्ट करेंगे.</p><p class="jove_content"<img src="/files/ftp_upload/2703/2703fig1.jpg" alt="Figure 1"><strong> चित्रा 1</strong>. मुख्य स्कोप इनपुट पृष्ठ. इस पृष्ठ पर विश्लेषण किया जा जीन दर्ज करें और प्रजातियों को परिभाषित करने के लिए प्रयोग किया जाता है और अपस्ट्रीम क्षेत्र की लंबाई की जांच हो. वैकल्पिक रूप से, उपयोगकर्ता ईमेल द्वारा परिणाम का अनुरोध करने या किसी भी निर्दिष्ट आकृति के लिए खोज सीमित कर सकते हैं. वीडियो मदद भी उपलब्ध है.</p><p class="jove_content"<img src="/files/ftp_upload/2703/2703fig2.jpg" alt="Figure 2"><strong> चित्रा 2</strong>. मुख्य स्कोप इनपुट मूल्यों के साथ पृष्ठ के एक खोज प्रदर्शन करने के लिए में भर दिया. इन मानकों 'नमूना खोज' बटन दबाने का परिणाम हैं. इस मामले में जांच करने के लिए अन्य स्कोप द्वारा पाया रूपांकनों से युक्त जीन को खोजने के बॉक्स की जाँच की है. यह विकल्प अब लेता है की गणना (जीनोम में हर जीन की जांच हो गया है), लेकिन दिलचस्प अंतर्दृष्टि प्रदान कर सकते हैं.</p><p class="jove_content"<img src="/files/ftp_upload/2703/2703fig3.jpg" alt="Figure 3"><strong> चित्रा 3</strong>. मुख्य स्कोप परिणाम पृष्ठ. इस पन्ने का स्कोप खोज के परिणामों को सारांशित है. सभी उच्च स्कोरिंग रूपांकनों की एक सूची प्रदान की है और एक रंग कोडित आकृति नक्शा विश्लेषण जीन के सेट में पहचान रूपांकनों की स्थिति से पता चलता है. एक रंग बॉक्स पर एक आकृति के लिए अगले क्लिक कि आकृति या बंद आकृति नक्शे में प्रदर्शन टॉगल जाएगा. एक महत्व स्कोर (हस्ताक्षर मूल्य), आकृति (कवरेज) युक्त जीन के अंश, और कि आकृति को खोजने के लिए प्रयोग किया जाता एल्गोरिथ्म के अलावा भी प्रदान की जाती हैं.</p><p class="jove_content"<img src="/files/ftp_upload/2703/2703fig4_1.jpg" alt="Figure 4 top"><img src="/files/ftp_upload/2703/2703fig4_2.jpg" alt="Figure 4 bottom"> चित्रा 4</strong>. यह परिणाम विवरण पृष्ठ को लाया जाता है जब एक विशिष्ट आकृति मुख्य परिणाम पेज में क्लिक किया है. यह व्यक्तिगत आकृति के विवरण से पता चलता है. अनुक्रम लोगो, स्थिति, वजन, मैट्रिक्स, और आम सहमति अनुक्रम प्रत्येक पृष्ठ पर भी आकृति उदाहरणों की सूची के सारांश की एक अलग तरह का प्रतिनिधित्व करते हैं. चूंकि 'पाते अतिरिक्त जीन' मूल खोज सेटअप में जाँच की थी, वहाँ भी इस पृष्ठ पर जीनोम कि इस आकृति होते में किसी अन्य जीन के बारे में जानकारी है. इस पृष्ठ से यह भी संभव है एक और स्कोप इस पृष्ठ पर अतिरिक्त पहचान की जीन सहित रन शुरू.</p><p class="jove_content"<img src="/files/ftp_upload/2703/2703fig5.jpg" alt="Figure 5"> चित्रा 5</strong>. यह आंकड़ा आकृति 'atgnnnnttg' चित्रा 4 में दिखाया गया है के लिए अतिरिक्त जीन के लिए देख रहे हैं के परिणामों से पता चलता है. मूल तीन जीनों आकृति नक्शे के तल पर कम मामले में कर रहे हैं. अतिरिक्त जीन ऊपरी मामले में दिखाए जाते हैं. इन जीनों के अपस्ट्रीम क्षेत्र में रूपांकनों के लिए एक स्पष्ट पैटर्न है. सूचना भी है कि निर्दिष्ट आकृति 'देखने' के रूप में एक एल्गोरिथ्म पता चलता है कि क्योंकि यह कैसे पहचान की थी. यह वास्तव में 5 से मेल खाता है<sup> वें</sup> आकृति इस विश्लेषण में स्पेसर द्वारा पाया.</p><p class="jove_content"<img src="/files/ftp_upload/2703/2703fig6.jpg" alt="Figure 6"> चित्रा 6</strong>. स्कोप Saccharomyces cerevisiae में ribosome biogenesis में शामिल जीनों के लिए उत्पादन. नोट रूपांकनों 'aaawtttbh' (लाल) और 'abctcatcd' (हरा) के बारे में 10-30 एनटीएस के द्वारा अलग है और जीन प्रतिलेखन शुरू के 100-200 nucleotides अपस्ट्रीम में मौजूद से मिलकर मॉड्यूल संरक्षित पैटर्न.</p>

Discussion

स्कोप coordinately विनियमित जीन के सेट में संभावित विनियामक रूपांकनों की पहचान के लिए उपयोग करने के लिए एक शक्तिशाली उपकरण के साथ शोधकर्ता प्रदान करता है. उपयोगकर्ता के लिए आकृति या कई अन्य खोजने साइटों की आवश्यकता होती है आकृति के रूप में आकृति की घटनाओं की संख्या के आकार पर लगता है की आवश्यकता नहीं है. इन मानकों मूल रूप से अज्ञात हैं जब तक आकृति की पहचान की है. इंटरफ़ेस दोनों दृश्यों या नाम जीन में प्रवेश करने के लिए और उत्पादन को देखने के लिए बहुत सरल है.

स्कोप उत्पादन रूपांकनों की पहचान कर रहे हैं कि सभी के बारे में विस्तृत जानकारी प्रदान करता है, आकृति प्रतिनिधित्व के तीन अलग अलग तरीकों का उपयोग कर. जीनों के सभी में आकृति के प्रत्येक उदाहरण स्थिति और "कतरा" जानकारी के साथ सूचीबद्ध है. आकृति नक्शे के रूप में आलेखीय परिणामों के एक दृश्य प्रदर्शन है कि समझने में आसान है और रूपांकनों रहे हैं कि वर्तमान में पैटर्न देखने के लिए एक सहज तरीका प्रदान करता है प्रदान करते हैं.

स्कोप डेटा में शोर की उपस्थिति के लिए बहुत मजबूत है. आमतौर पर, यह अतिरिक्त है कि वास्तव में नहीं हो सकता है जीन के बाकी के साथ सह विनियमित शुरू सेट में उपस्थित होने के जीनों के रूप लेता है. यह अक्सर होता है जब जीन है कि सह माइक्रोएरे प्रयोगों में व्यक्त के साथ शुरू. कभी कभी प्रयोग शोर है, या वहाँ कई प्रतिलेखन प्रयोगात्मक माइक्रोएरे प्रयोग के लिए इस्तेमाल किया परिस्थितियों में सक्रिय कारकों हो सकता है. इन विभिन्न प्रतिलेखन कारकों की संभावना डीएनए पर अलग लक्ष्य साइटों होगा. 4 गुना बाहरी जीन (शोर संकेत अनुपात 04:01 है) की उपस्थिति में भी, स्कोप अभी भी एक साइटों की भविष्यवाणी में अपनी सटीकता के 50% का कहना है.

हालांकि स्कोप जीन नाम के लिए 2 लाख से अधिक समानार्थी शब्द होते हैं, यह कभी कभी के कुछ जीन नाम की पहचान करने में विफल रहता है. हम लगातार हमारे पर्याय सूचियों को अद्यतन कर रहे हैं, लेकिन कभी कभी खोजने के लिए कि विभिन्न समानार्थी शब्द वही जीन को देखें. उन मामलों में, हम अस्पष्टता की वजह से समानार्थक शब्द शामिल नहीं हैं. यदि आप एक जीन का नाम है कि स्कोप द्वारा नहीं मिला है, यह अनुशंसा की जाती है कि आप जीनोम विशिष्ट साइट के लिए उल्लेख करने के लिए एक वैकल्पिक जीन स्कोप में उपयोग के लिए नाम खोजने के. प्रत्येक प्रजातियों के लिए उपयुक्त जीन नाम के उदाहरण स्कोप द्वारा प्रदान की जाती हैं.

स्कोप वर्तमान में नई प्रजाति हर समय जोड़ा जा रहा है के साथ 72 प्रजातियां शामिल हैं. वेब साइट में शामिल है वीडियो के रूप में अक्सर पूछे जाने वाले प्रश्न के रूप में अच्छी तरह से मदद. स्रोत कोड आज़ादी RHG के लिए लेखन द्वारा शैक्षणिक उपयोगकर्ताओं के लिए उपलब्ध है.

Disclosures

The authors have nothing to disclose.

Acknowledgements

इस शोध के राष्ट्रीय विज्ञान फाउंडेशन, DBI-0445967 से RHG एक अनुदान द्वारा समर्थित किया गया था.

References

  1. Chakravarty, A., Carlson, J. M., Khetani, R. S., Gross, R. H. A novel ensemble learning method for de novo computational identification of DNA binding sites. BMC Bioinformatics. 8, 249-249 (2007).
  2. Carlson, J. M., Chakravarty, A., DeZiel, C. E., Gross, R. H. SCOPE: a web server for practical de novo motif discovery. Nucleic Acids Res. 35, 259-264 (2007).
  3. Blom, E. J., Roerdink, J. B., Kuipers, O. P., Hijum, S. A. v. a. n. MOTIFATOR: detection and characterization of regulatory motifs using prokaryote transcriptome data. Bioinformatics. 25, 550-551 (2009).
  4. Blom, E. J. DISCLOSE : DISsection of CLusters Obtained by SEries of transcriptome data using functional annotations and putative transcription factor binding sites. BMC Bioinformatics. 9, 535-535 (2008).
  5. Bushey, A. M., Ramos, E., Corces, V. G. Three subclasses of a Drosophila insulator show distinct and cell type-specific genomic distributions. Genes Dev. 23, 1338-1350 (2009).
  6. Znaidi, S. Identification of the Candida albicans Cap1p regulon. Eukaryot Cell. 8, 806-820 (2009).
  7. Sharma, D., Mohanty, D., Surolia, A. RegAnalyst: a web interface for the analysis of regulatory motifs, networks and pathways. Nucleic Acids Res. 37, W193-W201 (2009).
  8. Znaidi, S. Genomewide location analysis of Candida albicans Upc2p, a regulator of sterol metabolism and azole drug resistance. Eukaryot Cell. 7, 836-847 (2008).
  9. Carlson, J., Chakravarty, A., Gross, R. B. E. A. M. A beam search algorithm for the identification of cis-regulatory elements in groups of genes. J Comput Biol. 13, 686-701 (2006).
  10. Carlson, J., Chakravarty, A., Khetani, R., Gross, R. Bounded search for de novo identification of degenerate cis-regulatory elements. BMC Bioinformatics. 7, 254-254 (2006).
  11. Chakravarty, A., Carlson, J. M., Khetani, R. S., DeZiel, C. E., Gross, R. H. SPACER: identification of cis-regulatory elements with non-contiguous critical residues. Bioinformatics. 23, 1029-1031 (2007).
check_url/kr/2703?article_type=t

Play Video

Cite This Article
Martyanov, V., Gross, R. H. Using SCOPE to Identify Potential Regulatory Motifs in Coregulated Genes. J. Vis. Exp. (51), e2703, doi:10.3791/2703 (2011).

View Video