Summary

तीन आयामी ऑप्टिकल संकल्प Photoacoustic माइक्रोस्कोपी

Published: May 03, 2011
doi:

Summary

ऑप्टिकल संकल्प photoacoustic माइक्रोस्कोपी (या PAM) एक उभरती इमेजिंग ऑप्टिकल अवशोषण के लिए सक्षम प्रौद्योगिकी विरोधाभासों<em> Vivo में</em> सेलुलर संकल्प और संवेदनशीलता के साथ. यहाँ, हम या PAM के प्रयोगात्मक प्रोटोकॉल, सिस्टम विन्यास, प्रणाली संरेखण सहित, पर एक कल्पना अनुदेश प्रदान ठेठ<em> Vivo में</em> प्रयोगात्मक प्रक्रियाओं, और कार्यात्मक इमेजिंग योजनाओं.

Abstract

Optical microscopy, providing valuable insights at the cellular and organelle levels, has been widely recognized as an enabling biomedical technology. As the mainstays of in vivo three-dimensional (3-D) optical microscopy, single-/multi-photon fluorescence microscopy and optical coherence tomography (OCT) have demonstrated their extraordinary sensitivities to fluorescence and optical scattering contrasts, respectively. However, the optical absorption contrast of biological tissues, which encodes essential physiological/pathological information, has not yet been assessable.

The emergence of biomedical photoacoustics has led to a new branch of optical microscopy optical-resolution photoacoustic microscopy (OR-PAM)1, where the optical irradiation is focused to the diffraction limit to achieve cellular1 or even subcellular2 level lateral resolution. As a valuable complement to existing optical microscopy technologies, OR-PAM brings in at least two novelties. First and most importantly, OR-PAM detects optical absorption contrasts with extraordinary sensitivity (i.e., 100%). Combining OR-PAM with fluorescence microscopy3 or with optical-scattering-based OCT4 (or with both) provides comprehensive optical properties of biological tissues. Second, OR-PAM encodes optical absorption into acoustic waves, in contrast to the pure optical processes in fluorescence microscopy and OCT, and provides background-free detection. The acoustic detection in OR-PAM mitigates the impacts of optical scattering on signal degradation and naturally eliminates possible interferences (i.e., crosstalks) between excitation and detection, which is a common problem in fluorescence microscopy due to the overlap between the excitation and fluorescence spectra.

Unique for optical absorption imaging, OR-PAM has demonstrated broad biomedical applications since its invention, including, but not limited to, neurology5, 6, ophthalmology7, 8, vascular biology9, and dermatology10. In this video, we teach the system configuration and alignment of OR-PAM as well as the experimental procedures for in vivo functional microvascular imaging.

Protocol

1. सिस्टम कॉन्फ़िगरेशन ऑप्टिकल विकिरण ऑप्टिकल विकिरण स्रोत: एक डायोड पंप ठोस राज्य (INNOSLAB, Edgewave) स्पंदित लेजर और डाई लेजर (सीबीआर – डी, Sirah). उत्पादन लेजर बीम (पल्स चौड़ाई: एनएस 7) एक संघनित्र (LA1131, Thorlabs) ले?…

Discussion

इस वीडियो में, हम या PAM के प्रयोगात्मक प्रोटोकॉल सिस्टम विन्यास, प्रणाली, संरेखण, और ठेठ प्रयोगात्मक प्रक्रियाओं सहित, पर एक विस्तृत निर्देश प्रदान करते हैं. लेबल मुक्त noninvasive या PAM microvascular और एक एकल केशिका आध?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

लेखक डा. Lynnea Brumbaugh पांडुलिपि के पास पढ़ने की सराहना करते हैं. यह काम राष्ट्रीय स्वास्थ्य EB000712 R01 अनुदान, EB008085 R01, R01 CA134539, CA136398 U54, और DK02057933 5P60 संस्थान के द्वारा प्रायोजित किया गया था. प्रो Lihong वी. वांग Microphotoacoustics इंक, और Endra, Inc, में एक वित्तीय हित है जो, हालांकि, इस काम का समर्थन नहीं किया है.

Materials

Home-made acoustic-optical beam combiner:

  • right-angle prism (NT32-545, Edmund Optics)
  • rhomboid prism (NT49-419, Edmund Optics)
  • silicone oil (1000cSt, Clearco Products)
  • OR-PAM system (Microphotoacoustics)

References

  1. Maslov, K., Zhang, H. F., Hu, S., Wang, L. V. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Opt. Lett. 33, 929-931 (2008).
  2. Zhang, C., Maslov, K., Wang, L. V. Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo. Opt. Lett. 35, 3195-3197 (2010).
  3. Wang, Y., Maslov, K., Kim, C., Hu, S., Wang, L. V. Integrated photoacoustic and fluorescence confocal microscopy. IEEE. Trans. Biomed. Eng. 57, 2576-2578 (2010).
  4. Jiao, S., Xie, Z., Zhang, H. F., Puliafito, C. A. Simultaneous multimodal imaging with integrated photoacoustic microscopy and optical coherence tomography. Opt. Lett. 34, 2961-2963 (2009).
  5. Hu, S., Maslov, K., Tsytsarev, V., Wang, L. V. Functional transcranial brain imaging by optical-resolution photoacoustic microscopy. J. Biomed. Opt. 14, 040503-040503 (2009).
  6. Hu, S., Yan, P., Maslov, K., Lee, J. M., Wang, L. V. Intravital imaging of amyloid plaques in a transgenic mouse model using optical-resolution photoacoustic microscopy. Opt. Lett. 34, 3899-3901 (2009).
  7. Hu, S., Rao, B., Maslov, K., Wang, L. V. Label-free Photoacoustic Ophthalmic Angiography. Opt. Lett. 35, 1-3 (2010).
  8. Jiao, S. L., Jiang, M. S., Hu, J. M., Fawzi, A., Zhou, Q. F., Shung, K. K., Puliafito, C. A., Zhang, H. F. Photoacoustic ophthalmoscopy for in vivo retinal imaging. Opt. Express. 18, 3967-3972 (2010).
  9. Oladipupo, S., Hu, S., Santeford, A., Yao, J., Kovalski, J. R., Shohet, R., Maslov, K., Wang, L. V., Arbeit, J. M. Conditional HIF-1 induction produces multistage neovascularization with stage-specific sensitivity to VEGFR inhibitors and myeloid cell independence. Blood. , .
  10. Hu, S., Maslov, K., Wang, L. V. In vivo functional chronic imaging of a small animal model using optical-resolution photoacoustic microscopy. Med. Phys. 36, 2320-2323 (2009).
  11. Hu, S., Maslov, K., Wang, L. V. Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed. Opt. Lett. 36, 1134-1136 (2011).
  12. Wang, X., Pang, Y., Ku, G., Xie, X., Stoica, G., Wang, L. V. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol. 21, 803-806 (2003).
  13. . . Laser Institute of America, American National Standard for Safe Use of Lasers ANSI Z136. , (2007).
  14. Jacques, S. L., Prahl, S. A. Optical Absorption of Hemoglobin . Oregon Medical Laser Center [Internet]. , (1999).
check_url/kr/2729?article_type=t

Play Video

Cite This Article
Hu, S., Maslov, K., Wang, L. V. Three-dimensional Optical-resolution Photoacoustic Microscopy. J. Vis. Exp. (51), e2729, doi:10.3791/2729 (2011).

View Video