Summary

Microwave-assisted En pott Syntes av N-Succinimidyl-4-[ 18 F] fluorobenzoate ([ 18 F] SFB)

Published: June 28, 2011
doi:

Summary

En lättköpt, ett-gryta syntes av N-succinimidyl-4-[<sup> 18</sup> F] fluorobenzoate ([<sup> 18</sup> F] SFB) utvecklades baserat på en icke vattenhaltigt, tre steg radiokemisk process. Använda mikrovågsvärmning kan hela proceduren vara klar på mindre än 30 min eller 60 min med ytterligare rening genom förberedande HPLC. Sönderfallet-korrigerade radiokemiska avkastning (RCYs) var 35-5% (n> 30).

Abstract

Biomolekyler, inklusive peptider, 1-9 proteiner, 10,11 och antikroppar och deras konstruerad fragment, är 12-14 allt viktigare både som potentiella läkemedel och molekylär agenter avbildning. Särskilt när de märkta med positron-emitting radioisotoper (t.ex. Cu-64, Ga-68 eller F-18), kan de användas som sonder för riktad avbildning av många fysiologiska och patologiska processer. 15-18 därför stora ansträngningar har ägnas åt syntes och utforskning av 18 F-märkt biomolekyler. Även om det finns eleganta exempel på direkt 18 F-märkning av peptider, 19-22 den hårda reaktionen förhållanden (dvs organiskt lösningsmedel, extrema pH, hög temperatur) i samband med direkt radiofluorination är vanligtvis oförenliga med sköra protein prover. Hittills är därför fortfarande införlivandet av radioaktivt märkt protes grupper i biomolekyler den metod som föredras. 23,24

N-Succinimidyl-4-[18 F] fluorobenzoate ([18 F] SFB), 25-37 en Bolton-Hunter typ reagens som reagerar med det primära amino grupper av biomolekyler, är en mycket mångsidig protes grupp för 18 F-märkning av ett brett spektrum av biologiska enheter, i termer av dess tydliga in vivo-stabilitet och hög radioaktiv inmärkning avkastning. Efter märkning med [18 F] SFB, den resulterande [18 F] fluorobenzoylated biomolekyler kan man utreda möjligheterna PET-spårämnen för in vivo imaging studier. 1 De flesta [18 F] SFB radiosyntheses beskrivs i den aktuella litteraturen kräver två eller tre reaktorer och flera reningar genom att använda antingen fast fas extraktion (SPE) eller högpresterande vätskekromatografi (HPLC). Sådana långa processer hämmar sin rutin produktion och omfattande program i radioaktiv inmärkning av biomolekyler. Trots att flera module-stöd [18 F] SFB synteser har rapporterats, 29-32, 41-42 de är huvudsakligen baserade på komplicerade och långa processer med hjälp av dyra kommersiellt tillgänglig radiokemi boxar (tabell 1). Därför är ytterligare förenkling av radiosynthesis av [18 C] SFB med en billig installation skulle vara mycket fördelaktigt för sin anpassning till en automatiserad process.

Häri rapporterar vi en kortfattad framställning av [18 C] SFB, bygger på en förenklad ett-gryta mikrovågs-assisterad syntes (figur 1). Vårt arbetssätt kräver inte rening mellan stegen eller vattenlösningar reagenser. Dessutom, mikrovågsugn bestrålning, som har använts i synteser av flera PET spårämnen, kan 38-41 ger högre RCYs och bättre selektivitet än motsvarande termiska reaktioner eller att de ger liknande avkastning i kortare reaktionstider. 38 Viktigast när märkningen biomolekyler kunde Tidsbesparingen vidarekopplas till efterföljande bioconjugation eller PET imaging steg 28,43 Det nya i vår förbättrade [18 F] SFB syntes är tvåfaldigt: (1). vattenfri deprotection strategin kräver ingen rening av mellanliggande (s) mellan varje steg och (2) mikrovågsugnen-assisted radiokemiska transformationer möjliggöra snabb och pålitlig produktion av [18 F] SFB.

Protocol

1. Inledande förberedelser En V-flaska (5-mL) RV1 (med omrörning bar) används som den huvudsakliga reaktionen fartyget för att utföra mikrovågssyntes. Den är ansluten till en PEEK-adapter med sju / utlopp portar ansluter och placeras inne i mikrovågsugnen hålighet (se figur 2). RV2 är ansluten till SPE patron (I) för att samla rå [18 F] SFB. RV3 är ansluten till SPE patron (II) för att samla in de sista [18 F] SFB lösning. Den kan placeras i ett varmt vattenbad (40 ° C) f…

Discussion

Detta förenklade tre steg, ett-gryta radiosynthesis av 18 F-Acylation reagens [18 F] SFB är utvecklat bygger på icke vattenhaltigt kemi. Denna process har utmärkt reproducerbarhet och kan användas säkert för produktion av [18 F] SFB i automatiserad radiokemi moduler på grund av två viktiga ändringar som beskrivs som följande sätt: 1. Vi anställer en deprotection / förtvålning steg i vattenfri KOtBu / DMSO-system för att ersätta den gemensamma vattenlösning grundläggand…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Denna studie stöddes av US Department of Energy (DE-FG02-09ER09-08 och DE-PS02-09ER09-18), i Jonsson Comprehensive Cancer Center vid UCLA, och den industri-universitetet Cooperative Research Program (UC Discovery Grant, bio07 -10.665). Vi tackar Dr Nagichettiar Satyamurthy och staber vid UCLA Biomedicinska Cyclotron Facility för att tillhandahålla F-18 radioisotoper och många diskussioner insiktsfulla. Vi tackar Dr. Michael Collins, Greg Leblanc, Joseph Lambert, och Keller Barnhardt från CEM för teknisk rådgivning och stöd. Vi tackar Dirk Williams, Darin Williams, Dr. Joseph Hong Dun Lin, och Michael van Dam för att designa och bearbetning av detaljer att ändra CEM mikrovågsugn reaktorn och för SPE rening moduler.

Materials

Name of the reagent Company Catalogue number Comments (optional)
acetic acid in aqueous solution (5%, v/v) Fisher A38-500 Prepared in our lab
Acetonitrile Sigma-Aldrich 75-05-8  
Diethyl ether Sigma-Aldrich 14775  
Dimethyl Sulfoxide (DMSO) Sigma-Aldrich 472301  
Ethyl 4-(N,N,N-trimethylammonium)benzoate triflate Prepared in lab    
4,7,13,16,21,24-Hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane (K222) Sigma-Aldrich 29,111-0  
O-(N-succinimidyl)-N,N,N‘,N‘-tetramethyluronium tetrafluoroborate (TSTU) Sigma-Aldrich 105832-38-0  
Potassium carbonate in aqueous solution (1M) Sigma-Aldrich 209619 Prepared in our lab
Potassium tert-butoxide Sigma-Aldrich 156671  

References

  1. Okarvi, S. M. Recent progress in fluorine-18 labeled peptide radiopharmaceuticals. Eur. J. Nucl. Med. 28, 929-938 (2001).
  2. Chen, X. Y., Park, R., Hou, Y. P., Khankaldyyan, V., Gonzales-Gomez, I., Tohme, M., Bading, J. R., Laug, W. E., Conti, P. S. MicroPET imaging of brain tumor angiogenesis with 18F-labeled PEGylated RGD peptide. Eur. J. Nucl. Med. Mol. Imaging. 31, 1081-1089 (2004).
  3. Wu, Z., Li, Z. -. B., Chen, K., Cai, W., He, L., Chin, F. T., Li, F., Chen, X. MicroPET of tumor integrin αvβ3 expression using 18F-labeled PEGylated tetrameric RGD peptide. J. Nucl. Med. 49, 1536-1544 (2007).
  4. Cheng, D., Yin, D., Zhang, L., Li, G., Wang, M., Li, S., Zheng, M., Cai, H., Wang, Y. Radiolabeling and in vitro and in vivo characterization of [18F]FB-[R8,15,21, L17]-VIP as a PET imaging agent for tumor over-expressed VIP receptors. Chem. Biol. Drug Des. 68, 319-325 (2006).
  5. Cheng, D., Yin, D., Zhang, L., Wang, M., Li, G., Wang, Y. Preparation of the novel fluorine-18-labeled VIP analog for PET imaging studies using two different synthesis methods. J. Fluorine Chem. 128, 196-201 (2007).
  6. Fredriksson, A., Johnstroem, P., Stone-Elander, S., Jonasson, P., Nygren, P. -. A., Ekberg, K., Johansson, B. -. L., Wahren, J. Labeling of human C-peptide by conjugation with N-succinimidyl-4-[18F]fluorobenzoate. J. Label. Compd. Radiopharm. 44, 509-519 (2001).
  7. Bergmann, R., Scheunemann, M., Heichert, C., Mäding, P., Wittrisch, H., Kretzschmar, M., Rodig, H., Tourwe, D., Iterbeke, K., Chavatte, K. Biodistribution and catabolism of 18F-labeled neurotensin(8-13) analogs. Nucl. Med. Biol. 29, 61-72 (2002).
  8. Guenther, K. J., Yoganathan, S., Garofalo, R., Kawabata, T., Strack, T., Labiris, R., Dolovich, M., Chirakal, R., Valliant, J. F. Synthesis and in vitro evaluation of 18F- and 19F-labeled insulin: a new radiotracer for PET-based molecular imaging studies. J. Med. Chem. 49, 1466-1474 (2006).
  9. Zhang, X., Cai, W., Cao, F., Schreibmann, E., Wu, Y., Wu, J. C., Xing, L., Chen, X. 18F-labeled bombesin analogs for targeting GRP receptor-expressing prostate cancer. J. Nucl. Med. 47, 492-501 (2006).
  10. Murakami, Y., Takamatsu, H., Taki, J., Tatsumi, M., Noda, A., Ichise, R., Tait, J. F., Nishimura, S. 18F-labelled annexin V: a PET tracer for apoptosis imaging. Eur. J. Nucl. Med. Mol. Imaging. 31, 469-474 (2004).
  11. Yagle, K. J., Eary, J. F., Tait, J. F., Grierson, J. R., Link, J. M., Lewellen, B., Gibson, D. F., Krohn, K. A. Evaluation of 18F-annexin v as a PET imaging agent in an animal model of apoptosis. J. Nucl. Med. 46, 658-666 (2005).
  12. Vaidyanathan, G., Zalutsky, M. R. An improved synthesis of N-succinimidyl 4-[18F]fluorobenzoate and its application to the labeling of a monoclonal antibody fragment. Bioconjugate Chem. 5, 352-356 (1994).
  13. Garg, P. K., Garg, S., Zalutsky, M. R. Fluorine-18 labeling of monoclonal antibodies and fragments with preservation of immunoreactivity. Bioconjugate Chem. 2, 44-49 (1991).
  14. Cai, W., Olafsen, T., Zhang, X., Cao, Q., Gambhir, S. S., Williams, L. E., Wu, A. M., Chen, X. PET imaging of colorectal cancer in xenograft-bearing mice by use of an 18F-labeled T84.66 anti-carcinoembryonic antigen diabody. J. Nucl. Med. 48, 304-310 (2007).
  15. Cai, W., Chen, X. Multimodality molecular imaging of tumor angiogenesis. J. Nucl. Med. 49, 113-128 (2008).
  16. Jong, M. d. e., Breeman, W. A., Kwekkeboom, D. J., Valkema, R., Krenning, E. P. Tumor imaging and therapy using radiolabeled somatostatin analogues. Acc. Chem. Res. 42, 873-880 (2009).
  17. Fani, M., André, J. P., Maecke, H. R. 68Ga-PET: a powerful generator-based alternative to cyclotron-based PET radiopharmaceuticals. Contrast Media Mol. Imaging. 3, 53-63 (2008).
  18. Shokeen, M., Anderson, C. J. Molecular imaging of cancer with copper-64 radiopharmaceuticals and positron emission tomography (PET. Acc. Chem. Res. 42, 832-841 .
  19. McBride, W. J., Sharkey, R. M., Karacay, H. C., D’Souza, A., Rossi, E. A., Laverman, P., Chang, C. -. H., Boerman, O. C., Goldenberg, D. M. A novel method of 18F radiolabeling for PET. J. Nucl. Med. 50, 991-998 (2009).
  20. Becaud, J., Mu, L., Karramkam, M., Schubiger, P. A., Ametamey, S. M., Graham, K., Stellfeld, T., Lehmann, L., Borkowski, S., Berndorff, D., Dinkelborg, L., Srinivasan, A., Smits, R., Koksch, B. Direct one-step 18F-labeling of peptides via nucleophilic aromatic substitution. Bioconjugate Chem. 20, 2254-2261 (2009).
  21. Mu, L., Höhne, A., Schubiger, P. A., Ametamey, S. M., Graham, K., Cyr, J. E., Dinkelborg, L., Stellfeld, T., Srinivasan, A., Voigtmann, U., Klar, U. Silicon-based building blocks for one-step 18F-radiolabeling of peptides for PET imaging. Angew. Chem. Int. Ed. 47, 4922-4925 (2008).
  22. Schirrmacher, R., Bradtmöller, G., Schirrmacher, E., Thews, O., Tillmanns, J., Siessmeier, T., Buchholz, H. G., Bartenstein, P., Wängler, B., Niemeyer, C. M., Jurkschat, K. 18F-labeling of peptides by means of an organosilicon-based fluoride acceptor. Angew. Chem. Int. Ed. 45, 6047-6050 (2006).
  23. Olberg, D. E., Hjelstuen, O. K., Solbakken, M., Arukwe, J., Karlsen, H., Cuthbertson, A. A novel prosthetic group for site-selective labeling of peptides for positron emission tomography. Bioconjugate Chem. 19, 1301-1308 .
  24. Wuest, F., Köhler, L., Berndt, M., Pietzsch, J. Systematic comparison of two novel, thiol-reactive prosthetic groups for 18F labeling of peptides and proteins with the acylation agent succinimidyl-4-[18F]fluorobenzoate ([18F]SFB. Amino Acids. 36, 283-295 (2009).
  25. Vaidyanathan, G., Zalutsky, M. R. Synthesis of N-succinimidyl 4-[18F]fluorobenzoate, an agent for labeling proteins and peptides with 18F. Nat. Protocols. 1, 1655-1661 .
  26. Guhlke, S., Coenen, H. H., Stöcklin, G. Fluoroacylation agents based on small N.C.A. [18F]fluorocarboxylic acids. Appl. Radiat. Isot. 45, 715-727 (1994).
  27. Wester, H. J., Hamacher, K., Stöcklin, G. A comparative study of N.C.A. Fluorine-18 labeling of proteins via acylation and photochemical conjugation. Nucl. Med. Biol. 23, 365-372 (1996).
  28. Wüst, F., Hultsch, C., Bergmann, R., Johannsen, B., Henle, T. Radiolabeling of isopeptide NE epsilon-(&gamma;-glutamyl)-L-lysine by conjugation with N-succinimidyl-4-[18F]fluorobenzoate. Appl. Radiat. Isot. 59, 43-48 (2003).
  29. Zijlstra, S., Gunawan, J., Burchert, W. Synthesis and evaluation of a 18F-labelled recombinant annexin-V derivative, for identification and quantification of apoptotic cells with PET. Appl. Rad. Isot. 58, 201-207 (2003).
  30. Mäding, P., Füchtner, F., Wüst, F. Module-assisted synthesis of the bifunctional labeling agent N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB. Appl. Rad. Isot. 63, 329-332 (2005).
  31. Marik, J., Sutcliffe, J. L. Fully automated preparation of N.C.A. 4-[18F]fluorobenzoic acid and N-succinimidyl 4-[18F]fluorobenzoate using a Siemens/CTI chemistry process control unit (CPCU). Appl. Rad. Isot. 65, 199-203 (2007).
  32. Johnström, P., Clark, J. C., Pickard, J. D., Davenport, A. P. Automated synthesis of the generic peptide labelling agent N-succinimidyl 4-[18F]fluorobenzoate and application to 18F-label the vasoactive transmitter urotensin-II as a ligand for positron emission tomography. Nucl. Med. Biol. 35, 725-731 (2008).
  33. Tang, G., Zeng, W. B., Yu, M. X., Kabalka, G. Facile synthesis of N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) for protein labeling. J Label. Compd. Radiopharm. 51, 68-71 .
  34. Azarian, V., Gangloff, A., Seimbille, Y., Delaloye, S., Czernin, J., Phelps, M. E., Silverman, D. H. S. Synthesis and liposome encapsulation of a novel 18F-conjugate of ω-conotoxin GVIA for the potential imaging of N-type Ca2+ channels in the brain by positron emission tomography. J. Label. Compd. Radiopharm. 49, 269-283 (2006).
  35. Toretsky, J., Levenson, A., Weinberg, I. N., Tait, J. F., Uren, A., Mease, R. C. Preparation of F-18 labeled annexin V: a potential PET radiopharmaceutical for imaging cell death. Nucl. Med. Biol. 31, 747-752 (2004).
  36. Glaser, M., Arstad, E., Luthra, S. K., Robins, E. G. Two-step radiosynthesis of [18F]N-succinimidyl-4-fluorobenzoate ([18F]SFB. J. Label. Compd. Radiopharm. 52, 327-330 (2009).
  37. Carroll, M., Yan, R., Aigbirhio, F., Soloviev, D., Brichard, L. The first nucleophilic synthesis of 3-[18F]fluoroethylbenzoate. J. Nucl. Med. 49, 303P-303P (2008).
  38. Stone-Elander, S., Elander, N. Microwave application in radiolabeling with short-lived positron-emitting radionuclides. J. Label. Compd. Radiopharm. 45, 715-746 (2002).
  39. Guo, N., Alagille, D., Tamagnan, G., Price, R. R., Baldwin, R. M. Microwave-induced nucleophilic [18F]fluorination on aromatic rings: synthesis and effect of halogen on [18F]fluoride substitution of meta-halo (F, Cl, Br, I)-benzonitrile derivatives. Appl. Rad. Isot. 66, 1396-1402 (2008).
  40. Mandap, K. S., Ido, T., Kiyono, Y., Kobayashi, M., Lohith, T. G., Mori, T., Kasamatsu, S., Kudo, T., Okazawa, H., Fujibayashi, Y. Development of microwave-based automated nucleophilic [18F]fluorination system and its application to the production of [18F]flumazenil. Nucl. Med. Biol. 36, 403-409 (2009).
  41. Scott, P. J. H., Shao, X. Fully automated, high yielding production of N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB), and its use in microwave-enhanced radiochemical coupling reactions. J. Label. Compd. Radiopharm. 53, 586-591 (2010).
  42. Tang, G., Tang, X., Wang, X. A facile automated synthesis of N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) for 18F-labeled cell-penetrating peptide as PET tracer. J. Label. Compd. Radiopharm. 53, 543-547 (2010).
  43. Olma, S., Liu, K., Chen, Y. -. C., Dam, R. v. a. n., Shen, C. K. -. F. Microfluidic Droplet Mixer for Fluorine-18 Labeling of Biomolecules. J. Label. Compd. Radiopharm. 52, S10-S10 (2009).
  44. Olma, S., Lambert, J., Barnhardt, E., Liu, K., Shen, C. K. -. F., van Dam, R. A compact microwave system for rapid, semi-automated radiosyntheses. J. Label. Compd. Radiopharm. 52, S509-S509 (2009).
check_url/kr/2755?article_type=t

Play Video

Cite This Article
Hou, S., Phung, D. L., Lin, W., Wang, M., Liu, K., Shen, C. K. Microwave-assisted One-pot Synthesis of N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB). J. Vis. Exp. (52), e2755, doi:10.3791/2755 (2011).

View Video