Summary

检查本地网络处理采用多接触层电极记录

Published: September 08, 2011
doi:

Summary

我们了解皮质电路中的一个根本的问题是,如何在不同的皮质层的网络感官的信息进行编码。在这里,我们描述了利用多接触层电极的电生理技术记录单单位和地方领域的潜力和目前的分析,以确定皮质层。

Abstract

皮质层是无处不在整个大脑皮层1-4高度经常性的本地网络的组成结构。近年来,已取得了重大进展,我们的理解差异,在应对不同皮质层5-8神经元属性,但仍然是一个伟大的左了解神经元的人群是否,以及如何在特定层的信息进行编码处理方式。

现有的多电极阵列技术,虽然测量皮质空间沿皮层表面的许多毫米的反应信息,是不适宜的做法层皮质电路问题。在这里,我们提出我们的方法,为建立和记录单个神经元和跨越的初级视觉皮层(V1)皮质层局部场电位(LFPs),利用多接触电极层(图1; Plextrode U型探头,Plexon公司公司)。

的方法包括录音设备建设,皮质层的识别,并确定单个神经元的感受野。要找出皮质层,我们衡量LFP使用满场闪现刺激时间序列诱发反应电位(ERPs)。然后,我们执行的电流源密度(CSD)分析,以确定在基地的第4层(第4层的水槽内,后来被称为颗粒 9-12)片源配置的陪同下极性反转。电流源密度是有用的,因为它提供了一个索引的位置,方向,和跨膜电流流过密度,使我们能够准确定位电极记录在一个单一的渗透层6,11,12。

Protocol

1。南Microdrive微型建设南电极驱动系统相结合,我们使用的U型探头。建立这个系统需要2-3个小时,但一旦建成,这是非常简单的修改。我们开始组装,其中包括一个4通道的基础(图2a)南塔,南腔(图2b),网格间距1毫米(图2c),1-4螺钉微型硬盘(图2d),1 -4导管(图2E,直径为500微米,并削减约5-7厘米),和1-4微型硬盘塔(图2F)。为方便起见,我们将描述为建设有一个塔?…

Discussion

多单元的录音已经成为分析皮层中的神经网络是如何刺激信息进行编码的标准。执行层电极由于电极技术的最新进展,使局部皮层电路前所未有的特性。虽然多电极记录提供了有关神经种群动态的有用信息,使多个层电极更高的分辨率和更多的神经元的具体位置信息。由于皮层与解剖不同的输入和输出层的组织,这引起了在这些层disparately感觉信息是如何处理的问题。

我们已…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢王晔讨论和行为训练索林Pojoga。由美国国立卫生研究院尤里卡计划,国家眼科研究所,皮尤学者奖励计划,詹姆斯S ·麦克唐纳基金会(VD),以及美国国立卫生研究院视力训练津贴(BJH)支持。

Materials

Name of Equipment Company Catalogue number Comments
Nan microdrive system Nan Instruments NAN-S4 Figure 2. Custom clamps are needed to use the U-Probe. Everything mentioned with exception of the U-Probe is provided by NAN instruments.
Screw microdrives MIT Machine shop   Anything that is able to secure a guide tube to the NAN grid should be appropriate.
Stainless Steel Guide Tubes Small Parts B00137QHNS (1) or B00137QHO2 (5) These are 60 in long and cut to size in the laboratory using a Dremel hand drill
Plexon U-Probe Plexon, Inc PLX-UP-16-25ED-100-SE-360-25T-500 See U-Probe specifications available at www.plexon.com Also see Figure 1.

Table 1. Hardware.

Name of Software Company Website Comments
NAN software NAN http://www.naninstruments.com/DesignConcept.htm Computer interface requires an additional serial port to accommodate the Plexon system and the NAN hardware
Offline Sorter, FPAlign, PlexUtil, MATLAB programs Plexon http://www.plexon.com/downloads.html#Software Under ‘Installation Packages’
NeuroExplorer NeuroExplorer http://www.neuroexplorer.com/ Under ‘Resources’
CSDplotter Version 0.1.1 Klas H. Petterson http://arken.umb.no/~klaspe/user_guide.pdf  

Table 2. Software.

References

  1. Hubel, D. H., Wiesel, T. N. Receptive fields and functional architecture of monkey striate cortex. J Physiol. 195, 215-243 (1968).
  2. Mountcastle, V. B. Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol. 20, 408-434 (1957).
  3. Nassi, J. J., Callaway, E. M. Parallel processing strategies of the primate visual system. Nat Rev Neurosci. 10, 360-372 (2009).
  4. Ringach, D. L., Hawken, M. J., Shapley, R. Dynamics of orientation tuning in macaque primary visual cortex. Nature. 387, 281-284 (1997).
  5. Martinez, L. M. Receptive field structure varies with layer in the primary visual cortex. Nat Neurosci. 8, 372-379 (2005).
  6. Lakatos, P., Karmos, G., Mehta, A. D., Ulbert, I., Schroeder, C. E. Entrainment of neuronal oscillations as a mechanism of attentional selection. Science. 320, 110-113 (2008).
  7. Sun, W., Dan, Y. Layer-specific network oscillation and spatiotemporal receptive field in the visual cortex. Proc Natl Acad Sci U S A. 106, 17986-17991 (2009).
  8. Maier, A., Adams, G. K., Aura, C., Leopold, D. A. Distinct superficial and deep laminar domains of activity in the visual cortex during rest and stimulation. Frontiers in Systems Neuroscience. 4, 12-12 (2010).
  9. Mitzdorf, U. Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev. 65, 37-100 (1985).
  10. Mitzdorf, U., Singer, W. Excitatory synaptic ensemble properties in the visual cortex of the macaque monkey: a current source density analysis of electrically evoked potentials. J Comp Neurol. 187, 71-83 (1979).
  11. Schroeder, C. E., Mehta, A. D., Givre, S. J. A spatiotemporal profile of visual system activation revealed by current source density analysis in the awake macaque. Cereb Cortex. 8, 575-592 (1998).
  12. Schroeder, C. E., Tenke, C. E., Givre, S. J., Arezzo, J. C., Vaughan, H. G. Striate cortical contribution to the surface-recorded pattern-reversal VEP in the alert monkey. Vision Res. 31, 1143-1157 (1991).
  13. Amzica, F., Steriade, M. Cellular substrates and laminar profile of sleep K-complex. 신경과학. 82, 671-686 (1998).
  14. Kandel, A., Buzsaki, G. Cellular-synaptic generation of sleep spindles, spike-and-wave discharges, and evoked thalamocortical responses in the neocortex of the rat. J Neurosci. 17, 6783-6797 (1997).
  15. Sakata, S., Harris, K. D. Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex. Neuron. 64, 404-418 (2009).
  16. Nicholson, C., Freeman, J. A. Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. J Neurophysiol. 38, 356-368 (1975).
  17. Pettersen, K. H., Devor, A., Ulbert, I., Dale, A. M., Einevoll, G. T. Current-source density estimation based on inversion of electrostatic forward solution: effects of finite extent of neuronal activity and conductivity discontinuities. J Neurosci Methods. 154, 116-133 (2006).
  18. Vaknin, G., DiScenna, P. G., Teyler, T. J. A method for calculating current source density (CSD) analysis without resorting to recording sites outside the sampling volume. J Neurosci Methods. 24, 131-135 (1988).

Play Video

Cite This Article
Hansen, B. J., Eagleman, S., Dragoi, V. Examining Local Network Processing using Multi-contact Laminar Electrode Recording. J. Vis. Exp. (55), e2806, doi:10.3791/2806 (2011).

View Video