Summary

Identification and Analysis of Mouse Erythroid Progenitors using the CD71/TER119 Flow-cytometric Assay

Published: August 05, 2011
doi:

Summary

A flow-cytometric method for identification and molecular analysis of differentiation-stage-specific murine erythroid progenitors and precursors, directly in freshly –harvested mouse bone marrow, spleen or fetal liver. The assay relies on cell-surface markers CD71, Ter119, and cell size.

Abstract

The study of erythropoiesis aims to understand how red cells are formed from earlier hematopoietic and erythroid progenitors. Specifically, the rate of red cell formation is regulated by the hormone erythropoietin (Epo), whose synthesis is triggered by tissue hypoxia. A threat to adequate tissue oxygenation results in a rapid increase in Epo, driving an increase in erythropoietic rate, a process known as the erythropoietic stress response. The resulting increase in the number of circulating red cells improves tissue oxygen delivery. An efficient erythropoietic stress response is therefore critical to the survival and recovery from physiological and pathological conditions such as high altitude, anemia, hemorrhage, chemotherapy or stem cell transplantation.

The mouse is a key model for the study of erythropoiesis and its stress response. Mouse definitive (adult-type) erythropoiesis takes place in the fetal liver between embryonic days 12.5 and 15.5, in the neonatal spleen, and in adult spleen and bone marrow. Classical methods of identifying erythroid progenitors in tissue rely on the ability of these cells to give rise to red cell colonies when plated in Epo-containing semi-solid media. Their erythroid precursor progeny are identified based on morphological criteria. Neither of these classical methods allow access to large numbers of differentiation-stage-specific erythroid cells for molecular study. Here we present a flow-cytometric method of identifying and studying differentiation-stage-specific erythroid progenitors and precursors, directly in the context of freshly isolated mouse tissue. The assay relies on the cell-surface markers CD71, Ter119, and on the flow-cytometric ‘forward-scatter’ parameter, which is a function of cell size. The CD71/Ter119 assay can be used to study erythroid progenitors during their response to erythropoietic stress in vivo, for example, in anemic mice or mice housed in low oxygen conditions. It may also be used to study erythroid progenitors directly in the tissues of genetically modified adult mice or embryos, in order to assess the specific role of the modified molecular pathway in erythropoiesis.

Protocol

1. Harvesting of tissues Prepare tubes containing 2 to 5 ml cold staining buffer (phosphate-buffered saline (PBS) with added 0.2% BSA and 5mM glucose). Keep tubes on ice prior to tissue harvest. Cull mice according to appropriate approved protocol (e.g. CO2 inhalation followed by cervical dislocation). Draw blood by cardiac puncture into EDTA or heparin blood-collection tubes for later analysis, e.g. of hematocrit, reticulocyte count or CBC analysis. Harvest the spleen an…

Discussion

The flow-cytometric methodology allows simultaneous investigation of any cellular function that may be detected with a fluorescence-conjugated specific antibody or ligand, including cell surface markers, protein expression, cell survival, cell signaling using phospho-specific antibodies 3 and cell cycle status. These measurements may be made in each of a number of differentiation-stage specific subsets, in the context of freshly isolated erythropoietic tissue. This method therefore allows assessment of functio…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank the UMass flow cytometry core: Richard Konz, Ted Giehl, Barbara Gosselin, Yuehua Gu and Tammy Krupoch. This work was funded by NIH/NHLBI RO1 HL084168 (M.S.) and NIH CA T32-130807 (J.R.S.). Core resources supported by the Diabetes Endocrinology Research Center grant DK32520 were also used.

Materials

Name of the reagent Company Catalogue number
Fas-biotin BD Pharmingen 554256
Streptavidin-APC Molecular Probes S868
40 μm sterile cell strainer Fisherbrand 22363547
Polystyrene round-bottom tubes for FACS staining BD Falcon 352008
U-bottom 96 well plate BD Falcon 353910
ChromePure Rabbit IgG Jackson ImmunoResearch 015-000-003
CD71-FITC (stock 0.5mg/ml) BD-Biosciences 553266
Ter119-PE (stock 0.2mg/ml) BD-Biosciences 553673
7AAD BD-Biosciences 559925
DAPI powder Roche 236276
FITC Rat Anti-Mouse CD41 MWReg30 BD Pharmingen 553848
FITC Rat Anti-Mouse CD45R/B220 RA3-6B2 BD Pharmingen 553087
FITC Rat Anti-Mouse CD411b/Mac-1 M1/70 BD Pharmingen 557396
FITC Rat Anti-Mouse Ly-6G and Ly-6C (Gr-1) RB6-8C5 BD Pharmingen 553126
FITC Hamster Anti-Mouse CD3e 145-2C11 BD Pharmingen 553061
APC BrdU Flow kit BD Pharmingen 557892
Annexin V-biotin BD Pharmingen 556418

References

  1. Liu, Y. Suppression of Fas-FasL coexpression by erythropoietin mediates erythroblast expansion during the erythropoietic stress response in. 108, 123-133 (2006).
  2. Socolovsky, M. Negative Autoregulation by FAS Mediates Robust Fetal Erythropoiesis. PLoS Biol. 5, e252-e252 (2007).
  3. Krutzik, P. O., Hale, M. B., Nolan, G. P. Characterization of the murine immunological signaling network with phosphospecific flow cytometry. J Immunol. 175, 2366-2373 (2005).
  4. Socolovsky, M. Ineffective erythropoiesis in Stat5a(-/-)5b(-/-) mice due to decreased survival of early erythroblasts. Blood. 98, 3261-3273 (2001).
  5. Guihard, S. The MAPK ERK1 is a negative regulator of the adult steady-state splenic erythropoiesis. Blood. 115, 3686-3694 (2010).
  6. Yu, X. An erythroid chaperone that facilitates folding of alpha-globin subunits for hemoglobin synthesis. J Clin Invest. 117, 1856-1865 (2007).
  7. Chen, M. L. Erythroid dysplasia, megaloblastic anemia, and impaired lymphopoiesis arising from mitochondrial dysfunction. Blood. 114, 4045-4053 (2009).
  8. Chen, K. Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis. Proc Natl Acad Sci U S A. 106, 17413-17418 (2009).
  9. McGrath, K. E., Bushnell, T. P., Palis, J. Multispectral imaging of hematopoietic cells: where flow meets morphology. J Immunol Methods. 336, 91-97 (2008).
  10. Pop, R. A key commitment step in erythropoiesis is synchronized with the cell cycle clock through mutual inhibition between PU.1 and S-phase progression. PLoS Biol. 8, (2010).
  11. Borsook, H., Lingrel, J. B., Scaro, J. L., Millette, R. L. Synthesis of haemoglobin in relation to the maturation of erythroid cells. Nature. 196, 347-350 (1962).
check_url/kr/2809?article_type=t

Play Video

Cite This Article
Koulnis, M., Pop, R., Porpiglia, E., Shearstone, J. R., Hidalgo, D., Socolovsky, M. Identification and Analysis of Mouse Erythroid Progenitors using the CD71/TER119 Flow-cytometric Assay. J. Vis. Exp. (54), e2809, doi:10.3791/2809 (2011).

View Video