Summary

सक्रिय सेल संस्कृति आकार मेमोरी पॉलिमर

Published: July 04, 2011
doi:

Summary

संस्कृति दौरान स्थलाकृति बदलने की क्षमता के साथ सेल संस्कृति substrates के विकास के लिए एक विधि का वर्णन है. विधि स्मार्ट आकार स्मृति पॉलिमर है कि एक स्थायी आकार को याद करने की क्षमता है के रूप में जाना जाता है सामग्री का उपयोग करता है. इस अवधारणा को सामग्री और अनुप्रयोगों की एक विस्तृत श्रृंखला के लिए अनुकूलनीय है.

Abstract

Shape memory polymers (SMPs) are a class of “smart” materials that have the ability to change from a fixed, temporary shape to a pre-determined permanent shape upon the application of a stimulus such as heat1-5. In a typical shape memory cycle, the SMP is first deformed at an elevated temperature that is higher than its transition temperature, Ttrans [either the melting temperature (Tm) or the glass transition temperature (Tg)]. The deformation is elastic in nature and mainly leads to a reduction in conformational entropy of the constituent network chains (following the rubber elasticity theory). The deformed SMP is then cooled to a temperature below its Ttrans while maintaining the external strain or stress constant. During cooling, the material transitions to a more rigid state (semi-crystalline or glassy), which kinetically traps or “freezes” the material in this low-entropy state leading to macroscopic shape fixing. Shape recovery is triggered by continuously heating the material through Ttrans under a stress-free (unconstrained) condition. By allowing the network chains (with regained mobility) to relax to their thermodynamically favored, maximal-entropy state, the material changes from the temporary shape to the permanent shape.

Cells are capable of surveying the mechanical properties of their surrounding environment6. The mechanisms through which mechanical interactions between cells and their physical environment control cell behavior are areas of active research. Substrates of defined topography have emerged as powerful tools in the investigation of these mechanisms. Mesoscale, microscale, and nanoscale patterns of substrate topography have been shown to direct cell alignment, cell adhesion, and cell traction forces7-14. These findings have underscored the potential for substrate topography to control and assay the mechanical interactions between cells and their physical environment during cell culture, but the substrates used to date have generally been passive and could not be programmed to change significantly during culture. This physical stasis has limited the potential of topographic substrates to control cells in culture.

Here, active cell culture (ACC) SMP substrates are introduced that employ surface shape memory to provide programmed control of substrate topography and deformation. These substrates demonstrate the ability to transition from a temporary grooved topography to a second, nearly flat memorized topography. This change in topography can be used to control cell behavior under standard cell culture conditions.

Protocol

1. इज़ोटेर्माल NOA63 की पराबैंगनी – इलाज एक कस्टम इलाज चैम्बर (75 मिमी x 25 मिमी x 1 मिमी) एक गिलास स्लाइड, एक 1 मिमी मोटी Teflon स्पेसर, और एक एल्यूमिनियम प्लेट (75 मिमी x 25 मिमी x 3 मिमी) के रूप में चित्र 1 में ?…

Discussion

NOA63 के टी जी आसानी से इलाज के तापमान के माध्यम से नियंत्रित किया जा सकता है . हम इस प्रयोग एसएमपी substrates कि एक सेल संगत रेंज में चालू किया जा सकता है उत्पन्न. NOA63 पानी जो सूखी टी जी को कम करती है द्वारा plasti…

Disclosures

The authors have nothing to disclose.

Acknowledgements

लेखकों के लिए तकनीकी सहायता के लिए एसीसी सब्सट्रेट तैयारी के साथ केली ए बर्क धन्यवाद देना चाहूंगा. 10.1016/j.biomaterials.2010.12.006, कॉपीराइट Elsevier (2011): बायोमैटिरियल्स में प्रकाशित लेख, डेविस के.ए., एट अल, आकार स्मृति बहुलक substrates, बायोमैटिरियल्स, doi पर गतिशील सेल व्यवहार के आधार पर. इस सामग्री को अनुदान DMR 0907578 – सं के तहत NSF द्वारा समर्थित काम पर आधारित है.

Materials

Name of the reagent or instrument Company Catalogue number Comments (optional)
NOA63 Norland Products Inc. NOA63 Lot number 111
Dogbone Punch TestResource, Inc. Shakopee, MN   Scaled-down Type IV dogbone (ASTM D638-03)
Benchtop Hydraulic Press Carver 3851  
C3H10T1/2 Mouse Embryonic Fibroblasts ATCC CCL-226  
Biological Safety Cabinet Thermo Fisher 1357  
UV Lamp Spectroline SB-100PC  
Dynamic Mechanical Analyzer (DMA) TA Instruments, Inc. Q800  
Inverted Fluorescence Microscope Leica Leica DMI 4000B  
Confocal Laser Scanning Microscope Zeiss LSM 710 20x/0.8 NA air or a 40x/1.30 NA oil objective

References

  1. Liu, C., Qin, H., Mather, P. T. Review of progress in shape-memory polymers. J. Mater. Chem. 17, 1543-1543 (2007).
  2. Mather, P. T., Luo, X. F., Rousseau, I. A. Shape Memory Polymer Research. Annu. Rev. Mater. Res. 39, 445-445 (2009).
  3. Lendlein, A., Kelch, S. Shape Memory Polymers. Angew. Chem. Int. Edit. 41, 2034-2034 (2002).
  4. Ratna, D., Karger-Kocsis, J. Recent advances in shape memory polymers and composites: a review. J. Mater. Sci. 43, 254-254 (2008).
  5. Rousseau, I. A. Challenges of shape memory polymers: A review of the progress toward overcoming SMP’s limitations. Polym. Eng. Sci. 48, 2075-2075 (2008).
  6. Pelham, R. J., Wang, Y. L. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. U. S. A. 94, 13661-13661 (1997).
  7. Addae-Mensah, K. A., Kassebaum, N. J., Bowers, M. J., Reiserer, R. S., Rosenthal, S. J., Moore, P. E., Wikswo, J. P. A flexible, quantum dot-labeled cantilever post array for studying cellular microforces. Sensor Actuat. a-Phys. 136, 385-385 (2007).
  8. du Roure, O., Saez, A., Buguin, A., Austin, R. H., Chavrier, P., Siberzan, P., Ladoux, B. Force mapping in epithelial cell migration. Proc. Natl. Acad. Sci. U. S. A. 102, 2390-2390 (2005).
  9. Lam, T., Clem, W. C., Takayama, S. Reversible on-demand cell alignment using reconfigurable microtopography. Biomaterials. 29, 1705-1705 (2008).
  10. Stevens, M. M., George, J. H. Exploring and engineering the cell surface interface. Science. 310, 1135-1135 (2005).
  11. Tan, L., Tien, J., Pirone, D. M., Gray, D. S., Bhadriraju, K., Chen, C. S. Cells lying on a bed of microneedles: an approach to isolate mechanical. 100, 1484-1484 (2003).
  12. Teixeira, A. I., Nealey, P. F., Murphy, C. J. Responses of human keratocytes to micro- and nanostructured substrates. J. Biomed. Mater. Res. A. 71A, 369-369 (2004).
  13. Yang, M., Sniadecki, N., Chen, C. Geometric Considerations of Micro- to Nanoscale Elastomeric Post Arrays to Study Cellular Traction Forces. Adv. Mater. 19, 3119-3119 (2007).
  14. Zhao, Y., Zhang, X. Cellular Mechanics Study in Cardiac Myocytes Using PDMS Pillars Array. Sensor Actuat. a-Phys. 125, 398-398 (2006).
  15. DiOrio, A. M., Luo, X., Lee, K. M., Mather, P. T. A Functionally Graded Shape Memory Polymer. Soft Matter. 7, 68-68 (2011).
  16. Davis, K. A., Burke, K. A., Mather, P. T., Henderson, J. H. Dynamic cell behavior on shape memory polymer substrates. Biomaterials. 32, 2285-2285 (2011).
check_url/kr/2903?article_type=t

Play Video

Cite This Article
Davis, K. A., Luo, X., Mather, P. T., Henderson, J. H. Shape Memory Polymers for Active Cell Culture. J. Vis. Exp. (53), e2903, doi:10.3791/2903 (2011).

View Video