Summary

An In Vitro System to Study Tumor Dormancy and the Switch to Metastatic Growth

Published: August 11, 2011
doi:

Summary

A modified 3-D in vitro system is presented in which growth characteristics of several tumor cell lines in reconstituted basement membrane correlate with the dormant or proliferative behavior of the tumor cells at a metastatic secondary site in vivo.

Abstract

Recurrence of breast cancer often follows a long latent period in which there are no signs of cancer, and metastases may not become clinically apparent until many years after removal of the primary tumor and adjuvant therapy. A likely explanation of this phenomenon is that tumor cells have seeded metastatic sites, are resistant to conventional therapies, and remain dormant for long periods of time 1-4.

The existence of dormant cancer cells at secondary sites has been described previously as quiescent solitary cells that neither proliferate nor undergo apoptosis 5-7. Moreover, these solitary cells has been shown to disseminate from the primary tumor at an early stage of disease progression 8-10 and reside growth-arrested in the patients’ bone marrow, blood and lymph nodes 1,4,11. Therefore, understanding mechanisms that regulate dormancy or the switch to a proliferative state is critical for discovering novel targets and interventions to prevent disease recurrence. However, unraveling the mechanisms regulating the switch from tumor dormancy to metastatic growth has been hampered by the lack of available model systems.

in vivo and ex vivo model systems to study metastatic progression of tumor cells have been described previously 1,12-14. However these model systems have not provided in real time and in a high throughput manner mechanistic insights into what triggers the emergence of solitary dormant tumor cells to proliferate as metastatic disease. We have recently developed a 3D in vitro system to model the in vivo growth characteristics of cells that exhibit either dormant (D2.OR, MCF7, K7M2-AS.46) or proliferative (D2A1, MDA-MB-231, K7M2) metastatic behavior in vivo . We demonstrated that tumor cells that exhibit dormancy in vivo at a metastatic site remain quiescent when cultured in a 3-dimension (3D) basement membrane extract (BME), whereas cells highly metastatic in vivo readily proliferate in 3D culture after variable, but relatively short periods of quiescence. Importantly by utilizing the 3D in vitro model system we demonstrated for the first time that the ECM composition plays an important role in regulating whether dormant tumor cells will switch to a proliferative state and have confirmed this in in vivo studies15-17. Hence, the model system described in this report provides an in vitro method to model tumor dormancy and study the transition to proliferative growth induced by the microenvironment.

Protocol

1. Cell culture maintenance of dormant and metastatic tumor cell lines Grow dormant (D2OR/ MCF7/K7M2-AS.46) and metastatic tumor cells (D2A1/ MDA-MB-231/ K7M2) in 10 cm culture plates containing Dulbecco’s Modified Eagle’s Medium (DMEM) high glucose and 10% Fetal bovine serum (FBS) and antibiotics. Once the cells reach 70-80% confluence, proceed to the following assays. 2. Cell proliferation assay of dormant (quiescent) and metastatic (proliferating) tumor cells cultured in a …

Discussion

The underlying mechanisms that maintain disseminated tumor cells in a dormant state or result in their transition to metastatic growth remain largely unknown. This phenomenon has been extremely difficult to study in human patients 4,12 and few preclinical models have been developed to address this issue. Nevertheless, some in vivo and ex-vivo model systems for tumor dormancy have been characterized (reviewed in 1,12). However, the in vivo models for tumor dormancy can p…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This research was supported in part by the Intramural Research Program of the National Cancer Institute.

Materials

Name of the reagent Company Catalogue number Comments
DMEM high glucose Invitrogen 11965-118  
DMEM low glucose Invitrogen 11885-092  
Fetal bovine serum (FBS) Invitrogen 10091-148  
Growth factor-reduced 3-D Cultrex Basement Membrane Extract Trevigen Inc.   Protein concentration between 14-15mg/ml
D2.0R and D2A1 cell lines     5,19
K7M2 and K7M2AS1.46 cells     20
MCF-7 and MDA-MB-231 breast cancer cells ATCC    
An 8 chamber glass slide system (Lab -TEK, Thermo scientific) 177402  
Cell Titer 96 AQueous One Solution cell proliferation assay kit Promega G3580  
VECTASHIELD mounting medium with DAPI Vector Laboratories Inc. H-1200  
Normal donkey serum Jackson ImmunoResearch 017-000-121  
Elisa Plate Reader Bio-Tec   Record 490nm
Confocal microscope Zeiss-LSM-510   Magnification x63

References

  1. Aguirre-Ghiso, J. A. Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer. 7, 834-846 (2007).
  2. Pantel, K., Woelfle, U. Micrometastasis in breast cancer and other solid tumors. J Biol Regul Homeost Agents. 18, 120-125 (2004).
  3. Naumov, G. N. Ineffectiveness of doxorubicin treatment on solitary dormant mammary carcinoma cells or late-developing metastases. Breast Cancer Res Treat. 82, 199-206 (2003).
  4. Klein, C. A. Framework models of tumor dormancy from patient-derived observations. Curr Opin Genet Dev. , (2010).
  5. Naumov, G. N. Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res. 62, 2162-2168 (2002).
  6. Townson, J. L., Chambers, A. F. Dormancy of solitary metastatic cells. Cell Cycle. 5, 1744-1750 (2006).
  7. Chambers, A. F., Groom, A. C., MacDonald, I. C. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2, 563-572 (2002).
  8. Pantel, K. Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells. J Natl Cancer Inst. 85, 1419-1424 (1993).
  9. Demicheli, R. Tumour dormancy: findings and hypotheses from clinical research on breast cancer. Semin Cancer Biol. 11, 297-306 (2001).
  10. Braun, S. A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med. 353, 793-802 (2005).
  11. Pantel, K., Alix-Panabieres, C., Riethdorf, S. Cancer micrometastases. Nat Rev Clin Oncol. 6, 339-351 (2009).
  12. Goss, P. E., Chambers, A. F. Does tumour dormancy offer a therapeutic target. Nat Rev Cancer. 10, 871-877 (2010).
  13. Mendoza, A. Modeling metastasis biology and therapy in real time in the mouse lung. J Clin Invest. 120, 2979-2988 (2010).
  14. Naumov, G. N. A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J Natl Cancer Inst. 98, 316-325 (2006).
  15. Barkan, D. Metastatic growth from dormant cells induced by a col-I-enriched fibrotic environment. Cancer Res. 70, 5706-5716 (2010).
  16. Barkan, D., Green, J. E., Chambers, A. F. Extracellular matrix: A gatekeeper in the transition from dormancy to metastatic growth. Eur J Cancer. , (2010).
  17. Barkan, D. Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Res. 68, 6241-6250 (2008).
  18. Debnath, J., Muthuswamy, S. K., Brugge, J. S. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods. 30, 256-268 (2003).
  19. Morris, V. L. Mammary carcinoma cell lines of high and low metastatic potential differ not in extravasation but in subsequent migration and growth. Clin Exp Metastasis. 12, 357-367 (1994).
  20. Khanna, C. The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med. 10, 182-186 (2004).
check_url/kr/2914?article_type=t

Play Video

Cite This Article
Barkan, D., Green, J. E. An In Vitro System to Study Tumor Dormancy and the Switch to Metastatic Growth. J. Vis. Exp. (54), e2914, doi:10.3791/2914 (2011).

View Video