Summary

The Trier Social Stress Test Protocol for Inducing Psychological Stress

Published: October 19, 2011
doi:

Summary

This article describes a protocol for inducing psychological stress in participants, which enables researchers to measure psychological, physiological and neuroendocrine responses to stress within single participants or between groups.

Abstract

This article demonstrates a psychological stress protocol for use in a laboratory setting. Protocols that allow researchers to study the biological pathways of the stress response in health and disease are fundamental to the progress of research in stress and anxiety.1 Although numerous protocols exist for inducing stress response in the laboratory, many neglect to provide a naturalistic context or to incorporate aspects of social and psychological stress. Of psychological stress protocols, meta-analysis suggests that the Trier Social Stress Test (TSST) is the most useful and appropriate standardized protocol for studies of stress hormone reactivity.2 In the original description of the TSST, researchers sought to design and evaluate a procedure capable of inducing a reliable stress response in the majority of healthy volunteers.3 These researchers found elevations in heart rate, blood pressure and several endocrine stress markers in response to the TSST (a psychological stressor) compared to a saline injection (a physical stressor).3 Although the TSST has been modified to meet the needs of various research groups, it generally consists of a waiting period upon arrival, anticipatory speech preparation, speech performance, and verbal arithmetic performance periods, followed by one or more recovery periods. The TSST requires participants to prepare and deliver a speech, and verbally respond to a challenging arithmetic problem in the presence of a socially evaluative audience.3 Social evaluation and uncontrollability have been identified as key components of stress induction by the TSST.4 In use for over a decade, the goal of the TSST is to systematically induce a stress response in order to measure differences in reactivity, anxiety and activation of the hypothalamic-pituitary-adrenal (HPA) or sympathetic-adrenal-medullary (SAM) axis during the task.1 Researchers generally assess changes in self-reported anxiety, physiological measures (e.g. heart rate), and/or neuroendocrine indices (e.g. the stress hormone cortisol) in response to the TSST. Many investigators have adopted salivary sampling for stress markers such as cortisol and alpha-amylase (a marker of autonomic nervous system activation) as an alternative to blood sampling to reduce the confounding stress of blood-collection techniques. In addition to changes experienced by an individual completing the TSST, researchers can compare changes between different treatment groups (e.g. clinical versus healthy control samples) or the effectiveness of stress-reducing interventions.1

Protocol

1. Set Up All research should be approved by the appropriate Institutional Review Board or human subjects review committee prior to data collection. Ideally, two rooms should be available to conduct the TSST. A comfortable waiting room should be available to participants prior to beginning the TSST and during recovery periods. A separate interview room should be used during the speech preparation, speech performance and math portions of the TSST to introduce novelty and uncontrolability. A…

Discussion

In this article, we demonstrated how to conduct the Trier Social Stress Test in a healthy volunteer. The TSST is a standardized laboratory social stressor that induces robust and reliable increases in psychological, physiological and neuroendocrine measures. The TSST is a useful alternative to physical stressors such at the cold presser test or treadmill walking, and reproduces the more naturalistic psychological stress of performance in the presence of an evaluative audience.

Many aspects …

Disclosures

The authors have nothing to disclose.

Acknowledgements

Thank you to Jessica Ottmar for protocol suggestions and contributions to the representative data. Special thanks to Sabrina Blackledge, Lauren Kohoutek and Kerisa Shelton for demonstrating this protocol.

Materials

Name of the equipment/Supply Company Catalogue number
BSL Psychophysiology System, Mac OS Including MP36 Data Acquisition Unit and three lead electrocardiogram electrodes BioPac Systems Inc. BSLPSY-M
State Trait Anxiety Inventory Mind Garden, Inc. STAID-B
Salivary Cortisol Enzyme Immuno Assay Kit Salimetrics 1-3002
2.0 ml polypropylene vials Fisher Scientific 05 40B 146
BioRad Microplate Reader, Model 680, with Microplate Manager software BioRad Plate Reader: 168 1000 Software: 1706800

References

  1. Kudielka, B. M., Hellhammer, D. H., Kirschbaum, C., Harmon-Jones, E., Winkielman, P. Ten years of research with the Trier Social Stress Test – Revisited. Social Neuroscience: Integrating Biological and Psychological Explanations. , (2007).
  2. Dickerson, S. S., Kemeny, M. E. Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research. Psychol. Bull. 130, 355-391 (2004).
  3. Kirschbaum, C., Pirke, K., Hellhammer, D. H. The “Trier social stress test” – a tool for investigating psychobiological stress response in a laboratory setting. Neuropsychobiology. 28, 76-81 (1993).
  4. Gruenewald, T. L., Kemeny, M. E., Aziz, N., Fahey, J. L. Acute threat to the social self: shame, social self-esteem, and cortisol activity. Psychosom. Med. 66, 915-924 (2004).
  5. Mendes, W. B., Harmon-Jones, E., Beer, J. S. Assessing autonomic nervous system activity. Methods in Social Neuroscience. , 118-147 (2009).
  6. Spielberger, C. D., Gorsuch, R. L., Lushene, P. R., Vagg, P. R., Jacobs, A. G. . Manual for the State-Trait Anxiety Inventory (Form Y). , (1983).
  7. Dawans, B. v. o. n., Kirschbaum, C., Heinrichs, M. The Trier Social Stress Test for groups (TSST-G): A new research tool for controlled simultaneous social stress exposure in a group format. Psychoneuroendocrinology. 36, 514-522 (2011).
  8. Pace, T. W. W., Negi, L. T., Adame, D. D., Cole, S. P., Sivilli, T. I., Brown, T. D., Issa, M. J., Raison, C. L. Effect of compassion meditation on neuroendocrine, innate immune and behavioral responses to psychosocial stress. Psychoneuroendocrinology. 34, 87-98 (2010).
  9. Kirschbaum, C., Würst, S., Hellhammer, D. Consistent sex differences in cortisol responses to psychological stress. Psychosom. Med. 54, 648-657 (1992).
  10. Therrien, F., Drapeau, V., Lalonde, J., Lupien, S. J., Beaulieu, S., Dore, J., Tremblay, A., Richard, D. Cortisol response to the Trier Social Stress Test in obese and reduced obese individuals. Biol. Psychol. 84, 325-329 (2010).
  11. Wüst, S., Entringer, S., Federenko, I. S., Schlotz, W., Hellhammer, D. H. Birth weight is associated with salivary cortisol responses to psychosocial stress in adult life. Psychoneuroendocrinology. 30, 591-598 (2005).
  12. Simeon, D., Yehuda, R., Cunill, R., Knutelska, M., Putnam, F. W., Smith, L. M. Factors associated with resilience in healthy adults. Psychoneuroendocrinology. 32, 1149-1152 (2007).
  13. Quirin, M., Pruessner, J. C., Kuhl, J. HPA system regulation and adult attachment anxiety: Individual differences in reactive and awakening cortisol. Psychoneuroendocrinology. 33, 581-590 (2009).
  14. Pierrehumbert, B., Torrisi, R., Glatz, N., Dimitrova, N., Heinrichs, M., Halfon, O. The influence of attachment on perceived stress and cortisol response to acute stress in women sexually abused in childhood or adolescence. Psychoneuroendocrinology. 34, 924-938 (2009).
  15. Fiocco, A. J., Joober, R., Lupien, S. J. Education modulates cortisol reactivity to the Trier Social Stress Test in middle-aged adults. Psychoneuroendocrinology. 32, 1158-1163 (2007).
  16. Oswald, L. M., Zandi, P., Nestadt, G., Potash, J. B., Kalaydjian, A. E., Wand, G. S. Relationship between cortisol responses to stress and personality. Neuropsychopharmacology. 31, 1583-1591 (2006).
  17. Fries, E., Hellhammer, D. H., Hellhammer, J. Attenuation of the hypothalamic-pituitary-adrenal axis responsivity to the Trier Social Stress Test by the benzodiazepine alprazolam. Psychoneuroendocrinology. 31, 1278-1288 (2006).
  18. Kudielka, B. M., Fischer, J. E., Metzenthin, P., Helfricht, S., Preckel, D., von Känel, R. No effect of 5-day treatment with acetylsalicylic acid (aspirin) or the beta-blocker propranolol (Inderal) on free cortisol responses to acute psychosocial stress: A randomized double-blind, placebo-controlled study. Neuropsychobiology. 56, 159-166 (2007).
  19. Gaab, J., Blättler, N., Menzl, T., Pabst, B., Stoyer, S., Ehlert, U. Randomized controlled evaluation of the effects of cognitive-behavioral stress management on cortisol responses to acute stress in healthy subjects. Psychoneuroendocrinology. 28, 767-779 (2003).
  20. Khalfa, S., Bella, S. D., Roy, M., Peretz, I., Lupien, S. J. Effects of relaxing music on salivary cortisol level after psychological stress. Ann. NY Acad. Sci. 999, 374-376 (2003).
  21. Balodis, I. M., Wynne-Edwards, K. E., Olmstead, M. C. The other side of the curve: Examining the relationship between pre-stressor physiological responses and stress reactivity. Psychoneuroendocrinology. 35, 1363-1373 (2010).
  22. Shultheiss, O. C., Stanton, S. J., Harmon-Jones, E., Beer, J. S. Assessment of salivary hormones. Methods in Social Neuroscience. , 17-44 (2009).
  23. Kudielka, B. M., Hellhammer, D. H., Wüst, S. Why do we respond so differently? Reviewing determinants of human salivary cortisol responses to challenge. Psychoneuroendocrinology. 34, 2-18 (2009).
  24. Buske-Kirschbaum, A., Jobst, S., Wustmans, A., Kirschbaum, C., Rauh, W., Hellhammer, D. Attenuated free cortisol response to psychosocial stress in children with atopic dermatitis. Psychosom. Med. 59, 419-426 (1997).
check_url/kr/3238?article_type=t

Play Video

Cite This Article
Birkett, M. A. The Trier Social Stress Test Protocol for Inducing Psychological Stress. J. Vis. Exp. (56), e3238, doi:10.3791/3238 (2011).

View Video