Summary

ثنائي الصفائح المشارك ثقافة الجرذ الخلايا العصبية الابتدائية القشرية والدبقية

Published: November 12, 2011
doi:

Summary

هنا نقدم مشروع بروتوكول لزراعة الخلايا العصبية الفئران القشرية في وجود طبقة المغذية الدبقية. الخلايا العصبية مثقف إقامة قطبية وخلق نقاط الاشتباك العصبي ، ويمكن فصلها عن الدبقية لاستخدامها في مختلف التطبيقات ، مثل الكهربية ، والتصوير الكالسيوم والمقايسات بقاء الخلية ، وكيمياء سيتولوجية مناعية ، وRNA / DNA / عزل بروتين.

Abstract

This video will guide you through the process of culturing rat cortical neurons in the presence of a glial feeder layer, a system known as a bilaminar or co-culture model. This system is suitable for a variety of experimental needs requiring either a glass or plastic growth substrate and can also be used for culture of other types of neurons.

Rat cortical neurons obtained from the late embryonic stage (E17) are plated on glass coverslips or tissue culture dishes facing a feeder layer of glia grown on dishes or plastic coverslips (known as Thermanox), respectively. The choice between the two configurations depends on the specific experimental technique used, which may require, or not, that neurons are grown on glass (e.g. calcium imaging versus Western blot). The glial feeder layer, an astroglia-enriched secondary culture of mixed glia, is separately prepared from the cortices of newborn rat pups (P2-4) prior to the neuronal dissection.

A major advantage of this culture system as compared to a culture of neurons only is the support of neuronal growth, survival, and differentiation provided by trophic factors secreted from the glial feeder layer, which more accurately resembles the brain environment in vivo. Furthermore, the co-culture can be used to study neuronal-glial interactions1.

At the same time, glia contamination in the neuronal layer is prevented by different means (low density culture, addition of mitotic inhibitors, lack of serum and use of optimized culture medium) leading to a virtually pure neuronal layer, comparable to other established methods1-3. Neurons can be easily separated from the glial layer at any time during culture and used for different experimental applications ranging from electrophysiology4, cellular and molecular biology5-8, biochemistry5, imaging and microscopy4,6,7,9,10. The primary neurons extend axons and dendrites to form functional synapses11, a process which is not observed in neuronal cell lines, although some cell lines do extend processes.

A detailed protocol of culturing rat hippocampal neurons using this co-culture system has been described previously4,12,13. Here we detail a modified protocol suited for cortical neurons. As approximately 20×106 cells are recovered from each rat embryo, this method is particularly useful for experiments requiring large numbers of neurons (but not concerned about a highly homogenous neuronal population). The preparation of neurons and glia needs to be planned in a time-specific manner. We will provide the step-by-step protocol for culturing rat cortical neurons as well as culturing glial cells to support the neurons.

Protocol

1. تشريح الدبقية (~ 2 أسابيع قبل طلاء الخلايا العصبية) للتحضير للأدوات معقمة في مكان تشريح الايثانول 70 ٪ ، إضافة 4 مل المتوسطة تشريح الأطباق الباردة ل60 ملم (طبق واحد في الدماغ) ، والمكان 2.5 ٪ والتربسين الدناز على الجليد إل?…

Discussion

يوفر هذا البروتوكول طريقة لزراعة الخلايا العصبية الفئران القشرية الأولية في وجود خلايا الدبقية ، بينما يسمح لتكون الخلايا العصبية معزولة بسهولة لأغراض التحليل التجريبي. لدعم التنمية دبق النمط الظاهري العصبية a صحية ، في حين أن الاستجابات العصبية تحوير أيضا لعلاجات…

Disclosures

The authors have nothing to disclose.

Acknowledgements

الكتاب أشكر أعضاء المختبر السابقين الذين ساهموا في صقل هذا البروتوكول والمعاهد الوطنية للصحة للحصول على الدعم على مر السنين (DA19808 وDA15014 إلى OM). آنا أبت 1 هو زميل في "تدريب والبحوث متعددة التخصصات في neuroAIDS بالحركة" (T32 – MH078795) ، وبالتالي تم دعم هذا العمل في جزء من المعاهد الوطنية للصحة تحت L. روث الجائزة الوطنية كيرشتاين خدمة أبحاث 5T32MH079785.

Materials

Reagent Concentration
Glucose 16 mM
Sucrose 22 mM
NaCl 135 mM
KCl 5 mM
Na2HPO4 1 mM
KH2PO4 0.22 mM
HEPES 10 mM
pH 7.4
Osmolarity 310±10 mOsm

Table 1. Dissection Medium.

Reagent Concentration
DMEM 90%
FBS 10%
Gentamicin 50 μg/mL

Tabe 2. Glia Plating Medium.

Reagent Concentration
DMEM 90%
Horse Serum 10%

Table 3. Neuron Plating Medium.

Reagent Concentration
DMEM 98%
N2 Supplement 1%
1M HEPES 1%
Ovalbumin 50 mg/100mL

Table 4. N2 Medium.

Reagent Concentration
Boric Acid 50 mM
Sodium Borate 12.5 mM

Table 5. Borate Buffer (for poly-lysine).

Reagent Company Catalogue number
High glucose Dulbecco’s Modified Eagle
Medium (DMEM)
Invitrogen 11995-073
Fetal Bovine Serum (FBS), Heat-inactivated Hyclone 26400-044
Horse Serum, Heat-inactivated Hyclone H1138
Gentamicin (50mg/mL) Invitrogen 15750-060
N2 Supplement (100x) Invitrogen 17502-048
HEPES buffer solution Invitrogen 15630-080
Albumin from chicken egg white, Grade VI
(Ovalbumin)
Sigma-Aldrich A2512
2.5% Trypsin Invitrogen 15090-046
0.5% Trypsin-EDTA (10X) Invitrogen 15400-054
Deoxyribonuclease I from bovine pancreas
(DNase)
Sigma-Aldrich D-5025
Paraplast Fisher 12-646-106
Poly-L-lysine Sigma-Aldrich P1274
Cytosine-β-D-arabinofuranoside hydrochloride Sigma-Aldrich C6645
Stereomicroscope Leica Leica ZOOM 2000
Cover glasses, Circles, 15 mm, Thickness
0.13-0.17 mm
Carolina 633031
Thermanox sheets Grace BioLabs HS4550
Large forceps Biomedical
연구
Instruments
70-4000
Fine-tipped No.5 forceps Fine Science
Tools
91150-20
Pattern No.1 forceps Biomedical
연구
10-1400
  Instruments  
Scissors, straight, sharp-blunt Biomedical
연구
Instruments
28-1435
Micro Dissecting scissors Biomedical
연구
Instruments
11-2070
Micro Dissecting Curved scissors Biomedical
연구
Instruments
11-1395

References

  1. Cook, A. Interactions between chemokines: regulation of fractalkine/CX3CL1 homeostasis by SDF/CXCL12 in cortical neurons. J. Biol. Chem. 285, 10563-10563 (2010).
  2. Nicolai, J., Burbassi, S., Rubin, J., Meucci, O. CXCL12 inhibits expression of the NMDA receptor’s NR2B subunit through a histone deacetylase-dependent pathway contributing to neuronal survival. Cell. Death. Dis. 1, e33-e33 (2010).
  3. Sengupta, R. Morphine increases brain levels of ferritin heavy chain leading to inhibition of CXCR4-mediated survival signaling in neurons. J. Neurosci. 29, 2534-2544 (2009).
  4. Meucci, O. Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity. Proc. Natl. Acad. Sci. U. S. A. 95, 14500-14500 (1998).
  5. Khan, M. Z. Regulation of neuronal P53 activity by CXCR 4. Mol. Cell. Neurosci. 30, 58-66 (2005).
  6. Patel, J. P. Modulation of neuronal CXCR4 by the micro-opioid agonist DAMGO. J. Neurovirol. 12, 492-500 (2006).
  7. Shimizu, S. Role of the transcription factor E2F1 in CXCR4-mediated neurotoxicity and HIV neuropathology. Neurobiol. Dis. 25, 17-26 (2007).
  8. Khan, M. Z. The chemokine receptor CXCR4 regulates cell-cycle proteins in neurons. J. Neurovirol. 9, 300-314 (2003).
  9. Khan, M. Z. The chemokine CXCL12 promotes survival of postmitotic neurons by regulating Rb protein. Cell. Death. Differ. 15, 1663-1672 (2008).
  10. Khan, M. Z., Vaidya, A., Meucci, O. CXCL12-mediated regulation of ANP32A/Lanp, a component of the inhibitor of histone acetyl transferase (INHAT) complex, in cortical neurons. J. Neuroimmune. Pharmacol. 6, 163-170 (2011).
  11. Dotti, C. G., Sullivan, C. A., Banker, G. A. The establishment of polarity by hippocampal neurons in culture. J. Neurosci. 8, 1454-1468 (1988).
  12. Kaech, S., Banker, G. Culturing hippocampal neurons. Nat. Protoc. 1, 2406-2415 (2006).
  13. Goslin, K., Banker, G., Goslin, K., Banker, G. . Culturing Nerve Cells. , 339-370 (1998).
  14. D’Ambrosio, J., Fatatis, A. Osteoblasts modulate Ca2+ signaling in bone-metastatic prostate and breast cancer cells. Clin. Exp. Metastasis. 26, 955-964 (2009).
check_url/kr/3257?article_type=t

Play Video

Cite This Article
Shimizu, S., Abt, A., Meucci, O. Bilaminar Co-culture of Primary Rat Cortical Neurons and Glia. J. Vis. Exp. (57), e3257, doi:10.3791/3257 (2011).

View Video