Summary

Brug af omvendt genetik til at manipulere NSS Gene af Rift Valley Fever virus MP-12 Strain to Improve Vaccine sikkerhed og effekt

Published: November 01, 2011
doi:

Summary

Det omvendte genetik system for Rift Valley fever virus MP-12 vaccinestamme er et nyttigt værktøj til at skabe ekstra MP-12 mutanter med øget dæmpning og immunogenicitet. Vi beskriver protokollen til at generere og karakterisere NSS mutant stammer.

Abstract

Rift Valley fever virus (RVFV), som forårsager hæmoragisk feber, neurologiske lidelser eller blindhed hos mennesker, og en høj abort og fosterskader hos drøvtyggere 1 er blevet klassificeret som et HHS / USDA overlap vælge agent og en risiko gruppe 3 patogen. Den tilhører slægten Phlebovirus i familien Bunyaviridae og er en af de mest virulente medlemmerne af denne familie. Flere omvendt genetik systemer til RVFV MP-12 vaccinestamme 2,3 samt vildtype RVFV stammer 4-6, herunder ZH548 og ZH501, er blevet udviklet siden 2006. MP-12 stamme (som er en risiko gruppe 2 patogen og en ikke-vælg agent) er stærkt svækket af flere mutationer i sin M-og L-segmenter, men stadig bærer virulent S-segmentet RNA 3, som koder for en funktionel virulens faktor, NSS. Den rMP12-C13type (C13type) transporterer 69% i-frame sletning af NSS ORF mangler alle de kendte NSS funktioner, mens det replikater som efficient som gør MP-12 i VeroE6 celler mangler type I-IFN. NSS inducerer en afspærring af vært transskription herunder interferon (IFN)-beta mRNA 7,8 og fremmer nedbrydning af dobbelt-strenget RNA-afhængig protein kinase (PKR) på post-translationel niveau. 9,10 IFN-beta er transcriptionally opreguleres med interferon regulerende faktor 3 (IRF-3), NF-kB og aktivator protein-1 (AP-1), og bindingen af ​​IFN-beta til IFN-alpha/beta receptor (IFNAR) stimulerer transskription af IFN-alpha gener eller andre interferon stimuleret gener (ISGs) 11, som fremkalder vært antivirale aktiviteter, mens værten transskription undertrykkelse herunder IFN-beta-genet fra NSS forhindrer genet upregulations af disse ISGs som reaktion på virusreplikation selvom IRF-3, NF-kB og aktivator protein-1 (AP-1) kan aktiveres ved RVFV7. . Således NSS er et fremragende mål til yderligere at dæmpe MP-12, og for at forbedre vært medfødte immunrespons ved at afskaffe den IFN-beta undertrykkelse funktion. Her, Vi beskriver en protokol for at generere en rekombinant MP-12 kodning muterede NSS, og giver et eksempel på en screeningsmetode til at identificere NSS mutanter mangler den funktion at undertrykke IFN-beta mRNA syntese. Ud over sin afgørende rolle i medfødte immunitet, er type-I IFN betydning for modningen af dendritiske celler og induktion af et adaptivt immunrespons 12-14. Således NSS mutanter overtalelse type I-IFN er yderligere svækket, men samtidig er mere effektive til at stimulere vært immunrespons end vildtype-MP-12, hvilket gør dem ideelle kandidater til vaccination tilgange.

Protocol

1. Inddrivelse af rekombinant MP-12 kodning NSS mutation (r) fra plasmidet DNA'er 2 Spred Baby hamster nyre (BHK) / T7-9 celler 15, der stabilt udtrykker T7 RNA polymerase, i 6-cm retter i Minimum Essential Medium (MEM)-alpha (Invitrogen, Cat # 32561037) indeholdende 10% føtalt bovint serum (FBS ), penicillin-streptomycin (Penicillin: 100 E / ml, Streptomycin: 100 mg / ml) (Invitrogen, Cat # 15140122), og 600 mg / ml af hygromycin B (Cellgro, Cat # 30-240-CR). * Effektivitete…

Discussion

Omvendt genetik systemer til RVFV er udviklet af flere grupper ved at udnytte T7 promotoren 2,4,5 eller mus 3 eller menneskelige 4 pol-I promotor. I dette manuskript, beskriver vi en protokol til at generere rekombinant RVFV MP-12 stammer ved hjælp BHK/T7-9 celler 15, der stabilt udtrykker T7 RNA polymerase. Effektiviteten af ​​virale inddrivelsen forskellig, afhængig af tilstand BHK/T7-9 celler, mængden af ​​plasmider, antallet af transfekterede celler og så vider…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Dette arbejde blev finansieret af Grant Nummer 5 U54 AI057156-07 via Western Regional Center of Excellence (WRCE), 1 R01 AI08764301-A1 fra National Institute of Allergy og infektionssygdomme, og en intern finansiering fra Sealy Center for Vaccine udvikling på University of Texas Medical Branch.

Materials

Name of the reagent Company Catalogue number Comments (optional)
Minimum Essential Medium (MEM)-alpha Invitrogen 32561037  
Dulbecco’s modified minimum essential medium Invitrogen 11965092  
Modified Eagle Medium (MEM 2x) Invitrogen 11935046  
Penicillin-Streptomycin Invitrogen 15140122  
Hygromycin B Cellgro 30-240-CR  
Tryptose phosphate broth MP biomedicals 1682149  
Noble agar VWR 101170-362  
TransIT-LT1 Mirus MIR2300  
Opti-MEM Invitrogen 31985070  
Aerosol tight lid Eppendorf C-2223-25  
0.33% neutral red solution Sigma Aldrich N2889-100ML  
C57/WT MEF cells InvivoGen mef-c57wt  
Blasticidin S InvivoGen Ant-bl-1  
Zeocin InvivoGen ant-zn-1  
QUANTI-Blue InvivoGen rep-qb1  
BHK/T7-9 cells15 Gifu university, Japan    
Vero E6 cells ATCC CRL-1586  

References

  1. Bird, B. H., Ksiazek, T. G., Nichol, S. T., Maclachlan, N. J. Rift Valley fever virus. J. Am. Vet. Med. Assoc. 234, 883-893 (2009).
  2. Ikegami, T., Won, S., Peters, C. J., Makino, S. Rescue of infectious rift valley fever virus entirely from cDNA, analysis of virus lacking the NSs gene, and expression of a foreign gene. J. Virol. 80, 2933-2940 (2006).
  3. Billecocq, A. RNA polymerase I-mediated expression of viral RNA for the rescue of infectious virulent and avirulent Rift Valley fever viruses. Virology. 378, 377-384 (2008).
  4. Habjan, M., Penski, N., Spiegel, M., Weber, F. T7 RNA polymerase-dependent and -independent systems for cDNA-based rescue of Rift Valley fever virus. J. Gen. Virol. 89, 2157-2166 (2008).
  5. Gerrard, S. R., Bird, B. H., Albarino, C. G., Nichol, S. T. The NSm proteins of Rift Valley fever virus are dispensable for maturation, replication and infection. Virology. 359, 459-465 (2007).
  6. Billecocq, A. NSs protein of Rift Valley fever virus blocks interferon production by inhibiting host gene transcription. J. Virol. 78, 9798-9806 (2004).
  7. May, N. L. e. TFIIH transcription factor, a target for the Rift Valley hemorrhagic fever virus. Cell. 116, 541-550 (2004).
  8. Ikegami, T. Rift Valley fever virus NSs protein promotes post-transcriptional downregulation of protein kinase PKR and inhibits eIF2alpha phosphorylation. PLoS Pathog. 5, e1000287-e1000287 (2009).
  9. Habjan, M. NSs protein of Rift valley fever virus induces the specific degradation of the double-stranded RNA-dependent protein kinase. J. Virol. 83, 4365-4375 (2009).
  10. Garcia-Sastre, A., Biron, C. A. Type 1 interferons and the virus-host relationship: a lesson in detente. Science. 312, 879-882 (2006).
  11. Bon, A. L. e. Type i interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity. 14, 461-470 (2001).
  12. Le Bon, A., Tough, D. F. Links between innate and adaptive immunity via type I interferon. Curr. Opin. Immunol. 14, 432-436 (2002).
  13. Tough, D. F. Type I interferon as a link between innate and adaptive immunity through dendritic cell stimulation. Leuk. Lymphoma. 45, 257-264 (2004).
  14. Ito, N. Improved recovery of rabies virus from cloned cDNA using a vaccinia virus-free reverse genetics system. Microbiol. Immunol. 47, 613-617 (2003).
  15. Terasaki, K., Murakami, S., Lokugamage, K. G., Makino, S. Mechanism of tripartite RNA genome packaging in Rift Valley fever virus. Proc. Natl. Acad. Sci. U.S.A. 108, 804-809 (2010).
  16. Buchholz, U. J., Finke, S., Conzelmann, K. K. Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J. Virol. 73, 251-259 (1999).
  17. Diaz, M. O. Homozygous deletion of the alpha- and beta 1-interferon genes in human leukemia and derived cell lines. Proc. Natl. Acad. Sci. U.S.A. 85, 5259-5263 (1988).
  18. Mosca, J. D., Pitha, P. M. Transcriptional and posttranscriptional regulation of exogenous human beta interferon gene in simian cells defective in interferon synthesis. Mol. Cell. Biol. 6, 2279-2283 (1986).
  19. Constantinescu, S. N. Expression and signaling specificity of the IFNAR chain of the type I interferon receptor complex. Proc. Natl. Acad. Sci. U.S.A. 92, 10487-10491 (1995).
  20. Kumar, K. G., Tang, W., Ravindranath, A. K., Clark, W. A., Croze, E., Fuchs, S. Y. SCF(HOS) ubiquitin ligase mediates the ligand-induced down-regulation of the interferon-alpha receptor. EMBO J. 22, 5480-5490 (2003).
  21. Kakach, L. T., Suzich, J. A., Collett, M. S. Rift Valley fever virus M segment: phlebovirus expression strategy and protein glycosylation. Virology. 170, 505-510 (1989).
  22. Kakach, L. T., Wasmoen, T. L., Collett, M. S. Rift Valley fever virus M segment: use of recombinant vaccinia viruses to study Phlebovirus gene expression. J. Virol. 62, 826-833 (1988).
  23. Niwa, H., Yamamura, K., Miyazaki, J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene. 108, 193-199 (1991).
  24. Muller, R. Characterization of clone 13, a naturally attenuated avirulent isolate of Rift Valley fever virus, which is altered in the small segment. Am. J. Trop. Med. Hyg. 53, 405-411 (1995).
  25. Le May, N. A SAP30 complex inhibits IFN-beta expression in Rift Valley fever virus infected cells. PLoS Pathog. 4, e13-e13 (2008).
  26. Kalveram, B., Lihoradova, O., Ikegami, T. NSs Protein of Rift Valley Fever Virus Promotes Post-Translational Downregulation of the TFIIH Subunit p62. J. Virol. 85, 6234-6243 (2011).
  27. Taniguchi, T., Ogasawara, K., Takaoka, A., Tanaka, N. IRF family of transcription factors as regulators of host defense. Annu. Rev. Immunol. 19, 623-655 (2001).
  28. Marie, I., Durbin, J. E., Levy, D. E. Differential viral induction of distinct interferon-alpha genes by positive feedback through interferon regulatory factor-7. EMBO J. 17, 6660-6669 (1998).
  29. Ikegami, T., Won, S., Peters, C. J., Makino, S. Rift Valley fever virus NSs mRNA is transcribed from an incoming anti-viral-sense S RNA segment. J. Virol. 79, 12106-12111 (2005).
  30. Mims, C. A. Rift Valley Fever virus in mice. I. General features of the infection. Br. J. Exp. Pathol. 37, 99-109 (1956).
  31. Bouloy, M. Genetic evidence for an interferon-antagonistic function of rift valley fever virus nonstructural protein NSs. J. Virol. 75, 1371-1377 (2001).
  32. Bird, B. H., Albarino, C. G., Nichol, S. T. Rift Valley fever virus lacking NSm proteins retains high virulence in vivo and may provide a model of human delayed onset neurologic disease. Virology. 362, 10-15 (2007).
check_url/kr/3400?article_type=t

Play Video

Cite This Article
Kalveram, B., Lihoradova, O., Indran, S. V., Ikegami, T. Using Reverse Genetics to Manipulate the NSs Gene of the Rift Valley Fever Virus MP-12 Strain to Improve Vaccine Safety and Efficacy. J. Vis. Exp. (57), e3400, doi:10.3791/3400 (2011).

View Video