Summary

RNAi-Screening auf postembryonalen Phänotypen in Identifizieren C elegans</em

Published: February 13, 2012
doi:

Summary

Wir beschreiben eine Methode, um sensibilisiert postembryonalen Regulatoren der Protein-Expression und Lokalisation in identifizieren<em> C elegans</em> Mit Hilfe eines RNAi-basierter Genom-Bildschirm und einen integrierten Transgen, die eine funktionelle, fluoreszenzmarkierten Protein exprimiert.

Abstract

C. elegans has proven to be a valuable model system for the discovery and functional characterization of many genes and gene pathways1. More sophisticated tools and resources for studies in this system are facilitating continued discovery of genes with more subtle phenotypes or roles.

Here we present a generalized protocol we adapted for identifying C. elegans genes with postembryonic phenotypes of interest using RNAi2. This procedure is easily modified to assay the phenotype of choice, whether by light or fluorescence optics on a dissecting or compound microscope. This screening protocol capitalizes on the physical assets of the organism and molecular tools the C. elegans research community has produced. As an example, we demonstrate the use of an integrated transgene that expresses a fluorescent product in an RNAi screen to identify genes required for the normal localization of this product in late stage larvae and adults. First, we used a commercially available genomic RNAi library with full-length cDNA inserts. This library facilitates the rapid identification of multiple candidates by RNAi reduction of the candidate gene product. Second, we generated an integrated transgene that expresses our fluorecently tagged protein of interest in an RNAi-sensitive background. Third, by exposing hatched animals to RNAi, this screen permits identification of gene products that have a vital embryonic role that would otherwise mask a post-embryonic role in regulating the protein of interest. Lastly, this screen uses a compound microscope equipped for single cell resolution.

Protocol

1. Screening-Stamm Bau Die sorgfältige Gestaltung des Screening-Stamm ist entscheidend für den Erfolg des Bildschirms und wurde an anderer Stelle 3 beschrieben. Für einige Forscher, ist mit einer Belastung, die ein sichtbares Produkt drückt aus einem Transgen für das Experiment benötigt. Viele Stämme mit integrierten Transgenen sind bei den einzelnen Forschern oder CGC. Wenn eine transgene Sorte für den Bildschirm erforderlich ist, aber nicht verfügbar ist, dann kann es unt…

Discussion

Die RNAi-Screening hier vorgestellte Methode ermöglicht eine schnelle und sensitive Analyse von Gen-Produkten für einen normalen (oder transgene) postembryonalen Phänotyp erforderlich. Das gezeigte Beispiel ist ein Bildschirm für die Gene in der subzellulären Lokalisation eines fluoreszenzmarkierten Proteins beteiligt. Allerdings ist dieses Protokoll modifiziert werden, um Gene, die anderen postembryonalen Phänotypen von Interesse zu identifizieren.

Diese Methode nutzt eine Kandidateng…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Die Autoren danken Herrn Dr. Rick Padgett (Waksman Institut, Rutgers University, NJ) für das Geschenk des DBL-1 cDNA und Dr. Christopher Rongo (Waksman Institut, Rutgers University, NJ) für eine Injektion Marker danken. Dr. Barth Grants Labor durchgeführt, die das Gen für die Bombardierung Pistole mit geringer Kopienzahl Integration des GFP-markierten DBL-1-Konstrukt. Die René Garcia Labor leistete technische Hilfe bei der Erstellung der texIs100. Die René Garcia, Robyn Lints und Hongmin Qin Laboratorien zur Verfügung gestellt produktive Beratung. Diese Arbeit wurde vom Start-up-Mitteln aus dem TAMHSC Department of Molecular and Cellular Medicine finanziert. Die Verbindung Umfang und Spinning-Disk-konfokale wurden mit Mitteln der Abteilung und der TAMHSC College of Medicine Dekanat zur Verfügung gestellt gekauft.

Materials

Name of the reagent Company Catalogue number Comments
NGM Agar Nematode growth medium IPM Scientific, Inc Can be prepared following NGM agar protocol25
M9 Medium 22mM KH2PO4,
42mM Na2HPO4,
86mM NaCl,
1 mM MgSO4
  26
Agar-Agar EMD Chemicals Inc. 1.01614.1000 2% in water for NGM plates. 4% in water for microscope slide pads (autoclave initially and microwave to melt thereafter).
Bacto Peptone Becton Dickinson – Difco CP 211677 0.25%
IPTG Research Products International Corp. I56000-5.0 1 mM final concentration
carbenicillin Research Products International Corp. C46000-5.0 50 μg/ml working dilution
LB Broth Lennox Becton Dickinson – Difco CP 240230 20 g/liter
tetracycline Sigma 268054 12.5 μg/ml working dilution
sodium hypochlorite Any brand 5% household bleach Use fresh bleach.
sodium hydroxide Any Brand CAS 1310-73-2 5 N stock
M9 medium Wormlab Recipe Book http://130.15.90.245/wormlab_recipe_book.htm#Commonlab 26
levamisol Sigma 31742 100 μM – 1 mM working dilution
sodium azide Fisher Scientific S227 10 mM in M9 working dilution
24-well plate Greiner Bio-One 662160 VWR distributor
microscope slides Any brand 75 x 25 x 1 mm  
microscope cover slips Any brand 22 x 22 mm No.1.5 Use the thickness recommended by the microscope manufacturer.
compound microscope Carl Zeiss, Inc. A1m Use objectives and filters to match the needs of the experiment.
media pump Manostat Varistaltic pump Kate
model #72-620-000
Use tubing and settings appropriate for the machine

References

  1. Giacomotto, J., Segalat, L. High-throughput screening and small animal models, where are we. Br. J. Pharmacol. 160, 204-216 (2010).
  2. Lamitina, T. Functional genomic approaches in C. elegans. Methods in Molecular Biology. 351, 127-138 (2006).
  3. Boutros, M., Ahringer, J. The art and design of genetic screens: RNA interference. Nat. Rev. Genet. 9, 554-566 (2008).
  4. Praitis, V., Casey, E., Collar, D., Austin, J. Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. 유전학. 157, 1217-1226 (2001).
  5. Yandell, M. D., Edgar, L. G., Wood, W. B. Trimethylpsoralen induces small deletion mutations in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America. 91, 1381-1385 (1994).
  6. Frokjaer-Jensen, C. Single-copy insertion of transgenes in Caenorhabditis elegans. Nature Genetics. 40, 1375-1383 (2008).
  7. Giordano-Santini, R., Dupuy, D. Selectable genetic markers for nematode transgenesis. Cell. Mol. Life. Sci. , (2011).
  8. Berkowitz, L. A., Knight, A. L., Caldwell, G. A., Caldwell, K. A. Generation of Stable Transgenic C. elegans Using Microinjection. J. Vis. Exp. (18), e833 (2008).
  9. Mello, C., Fire, A. DNA transformation. Methods in Cell Biology. 48, 451-482 (1995).
  10. Simmer, F. Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Curr. Biol. 12, 1317-1319 (2002).
  11. Zhuang, J. J., Hunter, C. P. Tissue-specificity of Caenorhabditis elegans enhanced RNAi mutants. 유전학. , (2011).
  12. Samuelson, A. V., Klimczak, R. R., Thompson, D. B., Carr, C. E., Ruvkun, G. Identification of Caenorhabditis elegans genes regulating longevity using enhanced RNAi-sensitive strains. Cold Spring Harbor Symposia on Quantitative Biology. 72, 489-497 (2007).
  13. Wang, D. Somatic misexpression of germline P granules and enhanced RNA interference in retinoblastoma pathway mutants. Nature. 436, 593-597 (2005).
  14. Fraser, A. G. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature. 408, 325-330 (2000).
  15. Kamath, R. S. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature. 421, 231-237 (2003).
  16. Peters, K., McDowall, J., Rose, A. M. Mutations in the bli-4 (I) locus of Caenorhabditis elegans disrupt both adult cuticle and early larval development. 유전학. , 129-195 (1991).
  17. Thacker, C., Peters, K., Srayko, M., Rose, A. M. The bli-4 locus of Caenorhabditis elegans encodes structurally distinct kex2/subtilisin-like endoproteases essential for early development and adult morphology. Genes & Development. 9, 956-971 (1995).
  18. Byerly, L., Cassada, R. C., Russell, R. L. The life cycle of the nematode Caenorhabditis elegans. I. Wild-type growth and reproduction. Dev. Biol. 51, 23-33 (1976).
  19. Stiernagle, T. Maintenance of C. elegans. WormBook. , 1-11 (2006).
  20. Savage-Dunn, C. Genetic screen for small body size mutants in C. elegans reveals many TGFbeta pathway components. Genesis. 35, 239-247 (2003).
  21. Qu, W. Reliability analysis of the Ahringer Caenorhabditis elegans RNAi feeding library: a guide for genome-wide screens. BMC Genomics. 12, 1471-2164 (2011).
  22. Nelson, M. D. A Bow-Tie Genetic Architecture for Morphogenesis Suggested by a Genome-Wide RNAi Screen in Caenorhabditis elegans. PLoS Genetics. 7, e1002010 (2011).
  23. Timmons, L., Fire, A. Specific interference by ingested dsRNA. Nature. 395, 854 (1998).
  24. Sarin, S., Prabhu, S., O’Meara, M. M., Pe’er, I., Hobert, O. Caenorhabditis elegans mutant allele identification by whole-genome sequencing. Nature Methods. 5, 865-867 (2008).
  25. Lewis, J. A., Fleming, J. T. Basic culture methods. Methods in Cell Biology. 48, 3-29 (1995).
  26. Brenner, S. The genetics of Caenorhabditis elegans. 유전학. 77, 71-94 (1974).
check_url/kr/3442?article_type=t

Play Video

Cite This Article
Beifuss, K. K., Gumienny, T. L. RNAi Screening to Identify Postembryonic Phenotypes in C. elegans. J. Vis. Exp. (60), e3442, doi:10.3791/3442 (2012).

View Video